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ABSTRACT

Tam, Kar Yan. Ph.D., Purdue University, May 1988. Knowledge 
Acquisition and Refinement in Expert Systems. Major Professor: Andrew B. 
Whinston.

The issue of knowledge refinement in expert systems is addressed in 

this thesis. In general, an expert system is composed of a knowledge base 

which stores application specific reasoning knowledge, an inference engine 

which processes the stored knowledge, and an interface through which 

communication links between the users and the expert system are established. 

In terms of knowledge refinement, this architecture is dependent on 

knowledge engineers to refine its stored knowledge on a periodical basis. The 

frequency with which the knowledge base is revised depends very much on 

the underlying application domain. Furthermore, the control mechanism of 

the inference engine may also need to be updated in order to match up with 

the changing inference process of human experts. In the scope of this thesis, 

we will primarily focus on the former.

In this thesis, we will generalize the principle of knowledge acquisition 

to knowledge refinement of a continuous nature. While knowledge 

acquisition takes place in the early stage of an expert system development,
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knowledge refinement is applicable during the entire life-span of an expert 

system. The thesis starts by presenting a conceptual framework of building 

knowledge acquisition systems. Based on this framework, a generic 

architecture of expert systems with a provision to refine its own knowledge 

base is discussed.

The novelty of this research is to study knowledge acquisition and 

refinement in expert system by presenting an architecture and to prove its 

validity, at least partially, by streamlining it to some generic problem tasks 

which are illustrated with a real-life application.

The thesis is organized as follows : Chapter 1 presents a conceptual 

framework of building knowledge acquisition systems. The idea of 

knowledge acquisition is extended to knowledge refinement in Chapter 2; a 

generic architecture of expert system that are capable of self-refinement of 

knowledge is presented. The architecture is then used to construct expert 

systems to perform generic problem tasks of pattern recognition and 

classifiaction in Chapter 3 and Chapter 4 respectively. Chapter 5 concludes 

the thesis by discussing future research directions of knowledge refinement.
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CHAPTER 1 

A CONCEPTUAL FRAMEWORK OF BUILDING 

KNOWLEDGE ACQUISITION SYSTEMS

1.1. Introduction

The process of knowledge acquisition is generally regarded as the 

bottleneck in developing expert systems [Buchanan 1982]. In a broader 

context, knowledge acquisition refers to the collective process of 

eliciting, structuring and coding of human expertise in a form that is 

computationally feasible on a computer.

Traditionally the task is accomplished through an iterative process of 

interviewing between a knowledge engineer and an expert. The 

interrogating process, though commonly adopted by knowledge engineers, 

has a number of pitfalls from a cognitive standpoint. The major obstacles 

against this approach are the inabilities of knowledge engineers to ask 

"to the point" questions and the inabilities of experts to articulate their 

expertise in concrete terms [Bainbridge 1987].

Eliciting knowledge by asking questions requires a knowledge 

engineer to has at least a certain degree of acquaintance with the problem
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domain. For instance in medical diagnosis, the concepts such as 

"symptoms" and "diseases" have to be fully understood beforehand. 

Otherwise, the validity of the knowledge base will very likely be impaired. 

In some domains, the background knowledge required is enormous, 

making tire interview technique infeasible and inaccurate if applied.

Furthermore, it is not uncommon that experts make their decisions 

which are not available for conscious introspection. Cognitively, this 

phenomenon occurs because human often cannot get access to their 

mental processes that lead to their final decisions. Ericsson and Simon 

[1984] suggested that only those information reside in short term memory 

can be verbalized. Since expert knowledge embrace skills, experiences, 

and problem solving techniques that have evolved through years of 

practice, they are particularly difficult to articulate using tire interview 

technique.

Various other approaches have been proposed to circumvent the 

bottleneck problem in knowledge acquisition. According to the role of 

computer played in the process of knowledge acquisition and the 

degree of learning performed on the part of tire acquirer (a knowledge 

engineer or a computer based knowledge acquisition system), they can be 

classified into two main streams of approaches.
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The first approach follows the direction of interviewing by 

improving the skills and introducing new techniques to aid a knowledge 

engineer in the knowledge acquisition process. The setting of this 

approach is still an iterative process between two parties - knowledge 

engineer and expert.

Newell and Simon [1972] proposed a way to elicit human expertise by 

having the experts to "think aloud" in a problem solving process. This 

method is called Protocol Analysis and is suggested to be a 

methodology in developing expert systems [Waterman 1971]. The idea is 

to study how experts solve problems by recording verbal transcripts of 

sample problem solving processes. These transcripts are then analyzed 

in detail. A transcript represents a solution path in solving a problem. It 

reveals sequence of problem solving events conducted by an expert in a 

problem solving episode.

A more elaborate variant of protocol analysis is taken in [Belkin 

1986] in which interactions between users and librarians in document 

retrieval situations are first observed and recorded in the form of audio 

transcripts. Next, discourse analysis [Hendrix 1979] is applied to the 

transcripts to identify and specify the functions of an intelligent interface 

for a document retrieval system.
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For protocol analysis, the knowledge granularity is at the utterance 

level, making the analysis a very time consuming process. Furthermore, 

analysts require considerable training in psychology in order to attain a 

satisfactory competence level. Ecrisson and Simon in [1984] gave a 

comprehensive account on the problems of eliciting knowledge using 

veibal data.

Another approach is taken in [Lafrance 1986] to formalize the 

interviewing process by proposing a knowledge acquisition grid. A 

knowledge aquisition grid represents a taxonomy of question types and 

forms of knowledge. It serves as a framework and a systematic way to 

train knowledge engineers to relate the form of knowledge (eg. Scripts, 

Rules-of Thumb) with the types of questions (eg. cataloging categories, 

ascertaining attributes) to be asked during an interview.

One common feature shared by these techniques is that they are 

basically manual techniques. The use of computer is limited to the 

analysis of data (eg. utterances in a transcript) rather than on the 

acquisition process itself. As a consequence, the inherent limits 

associated with these techniques on the effectiveness, completeness and 

cost of the process have led to research in automating the task by 

building computer based knowledge acquisition systems. By delegating the
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task to a computer, the duration of the process can be shortened to a 

large extent b y :

1) Direct encoding of expertise in a form recognizable by the inference 

engine.

2) Allowing rapid construction of prototypes to be assessed by experts and 

end users in the early stage of the development process.

3) Reducing the time spent in debugging the knowledge base by avoiding 

die possibility of an inconsistent knowledge base. This is accomplished by 

checking the consistency and completeness of the acquired expertise using 

a deductive mechanism.

In this chapter, the issue of building knowledge acquisition systems 

is addressed from the perspective of machine learning. We will present a 

framework that identifies the essential attributes of a knowledge 

acquisition system. The objective is twofolded. First, it explores the 

various techniques used in knowledge acquisition. Second, a framework 

is presented to provide a systematic view and guidelines for the design 

of knowledge acquisition systems. Attention is placed on the mapping 

between learning strategies and the other attributes of a knowledge 

acquisition system. By doing this, we attempt to abstract out the crucial 

decisions pertaining to the design of a knowledge acquisition system. In
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Section 1.2., the various learning strategies are discussed. Section 1.3. 

presents a framework that identifies the attributes of a knowledge 

acquisition system and discusses how these attributes are related to the 

various learning strategies. Section 1.4. concludes the chapter with a 

discussion on the implications of the framework.

1.2. Learning Strategies

Learning is defined in a number of ways. In [Simon 83], Simon 

defined learning as

"Learning denotes changes in the system that are adaptive in the 

sense that they enable the system to do the same task or tasks drawn from 

the same population more efficiently and more effectively the next time."

It is plausible to equate our connotation of "learning" with 

"knowledge acquisition" in the context of building systems that facilitate 

the acquisition of expertise. Indeed, numerous knowledge acquisition 

systems actually leam the domain knowledge from the experts [Cohen and 

Feigenbaum 1982]. They perform more than the transfer of expertise 

between media but act as individual entities that, like human, enrich their
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knowledge base through learning. One ambitious goal of Artificial 

Intelligence is to build expert systems that are capable to learn on their 

own. To this end, the theory of learning, especially machine learning 

[Simon 1983],[Carbonell, Michakski, and Mitchell 1983], provides 

valuable conceptual foundation and insights to research in this area.

Given our interest in building knowledge acquisition systems, we are 

more interested in the learning process itself. Unlike the definitions of 

learning which are numerous, there are basically four different 

approaches towards the process of learning : rote learning, learning 

by deduction, learning by analogy, and learning by induction. Notice that 

the complexity of the process and the degree of inference on the part of 

the learner increase in this order. In brief, a learning strategy describes 

how "new" knowledge is acquired and synthesized by the learner. The 

various strategies are discussed below.

1.2.1. Rote Learning

Rote learning refers to the direct implantation of knowledge. It 

involves two parties : a student and a teacher. Knowledge is spoon-feed 

into the student by the teacher. The role of the student is passive and the 

degree of inference on the part of a student is very limited during the
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learning process. In its strictest form, no modification or rejection of the 

implanted knowledge takes place during the process. The major activity 

conducted during the acquisition process is to index the acquired 

knowledge for later retrieval. Programming is a form of rote learning in 

the sense that instructions are provided by the programmer, and the 

computer follows whatever it is told to do.

Obviously, the ways knowledge engineers acquire knowledge do not 

fall into this category. However in cases where the knowledge engineer 

himself is an expert in the application area, rote teaming is the most 

direct and effective approach to build expert systems. The long iterative 

process of interviewing can then be eliminated. The knowledge engineer 

simply transplants his own expertise to a computer in a similar fashion as a 

programmer writes a program. This is aided by declarative languages 

such as Prolog which allows an expert to state the problem and its 

solution method in direct declarative form. In fact, a number of 

successful expert systems are built by professionals in their own areas.

1.2.2. Learning by Deduction

Added to the core knowledge acquired with a set of inference rules 

results in a strategy called teaming by deduction. The inference rules
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specify how additional knowledge can be deduced from the core 

knowledge during the learning process. No "new" knowledge will be 

created using this method. This is because the scope of the knowledge 

will be defined once the core knowledge and the set of inference rules 

are specified. The inference rules and the initial set of knowledge are 

provided by the teacher. Learning a piece of information involves the 

invocation of a deduction mechanism which is computationally more 

complicate than tire indexing structure used in rote learning. One can 

consider the choice between rote learning and deductive learning as one 

driven by the tradeoff between space and time. In logical terms, for 

instance, the fact that all mammals are animals can be stated as : For all x, 

Mammal(x) => Animal(x). In rote learning, to store the fact that human 

beings are both mammal and animial necessitates both Mammal(human) 

and Animal (human) to be physically resided in the knowledge base. In 

deductive learning systems, only the fact Mammal(human) and tire above 

statement needed to be stored. The fact Animal(human) can be deduced 

by applying the modus ponen inference rule as follows :

Mammal(human)

For all x. Mammal(x) => AnimaKx)

Animal(human)
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The price to pay for the space gained in deductive systems is the increase in 

time spent in performing the deduction as illustrated by the above 

example.

1.2.3. Learning by Analogy

To learn by analogy is to create new concepts by transforming and 

augmenting existing ones which are similar to the new concepts. A concept 

can be a physical object or a problem solving method. The process is 

usually broken down into two phases. In the first phase, existing concepts 

which bear strong similarity with the new concept are searched for. These 

concepts are then mapped to the new concept during the second phase. In 

oider to be successful, this approach requires a measure of similarity. 

A general definition of this measure is difficult. It depends on the kinds of 

concept that we are considering and the context of comparison.

Learning by analogy requires a certain amount of inference on the 

part of the learner in the way that a learner can choose the similarity 

measure that he will use to acquire knowledge. Suppose a learner thinks 

that driving a tank is similar to driving a bulldozer, the direction he will 

pursue in learning the concept of a tank will be very different from the 

one that he thinks buses and tanks are similar.
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1.2.4. Learning by Induction

Induction is to infer from specific to general. Usually, the induction 

process is driven by a model that specifies the form of relationship that 

we want to leam from a collection of examples. Examples of a concept 

are analyzed and the results are used to fill in the details of the model. The 

role of the teacher is to provide advices in the selection of models and the 

criteria of the induction process.

Tire discipline of statistics is the study of inductive inference from a 

rigorous mathematical perspective. For instance, a linear regression 

model assumes a linear relationship between the given dependent and 

independent variables. The induction process is to infer a linear 

regression line that best matches the examples. The goodness of fit 

measure is also defined in the model (ie. least square) and the actual 

value of which depends on the examples in hand.

In acquiring diagnosis rules in medicine, a knowledge engineer 

might try to infer symptoms-disease rules from past diagnosis cases. In 

essence, he tries to generalize these diagonses so that they can be applied 

in future cases. Notice that the induction process is examples driven and 

is subject to bias data samples. Also, the learning process depends on the 

number and types of examples (ie. positive and negative) available.
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1.2.5. Factors Affecting the Choice of Learning Strategies

Except for some ad hoc systems, almost all existmg learning 

systems fall into one of these categories or their variants. The question 

of which one to apply in building a knowledge acquisition system depends 

on a number of factors as follows :

1) Problem domain - The new problem domain and its relationships 

with others have significant impacts on the efficiency and effectiveness of 

the knowledge acquisition process. Three kinds of relationships are 

identified.

a) Disjoint problem domains - Two domains are disjoint when they 

are very different in their problem contexts. In these situations, there is no 

apparent learning strategy that is preferred over others. But in cases when 

two domains are identified to be very similar, analogy learning technique 

can be applied to learn the new concept from existing ones.

b) Problem domain is covered by other existing domains - If a 

problem domain is known to be covered by others that have already been 

learned, then the new domain can be learned by imposing conditions on the 

covering domain. The covering relationships between concepts can be 

represented by a hierarchy tree. By climbing down the hierarchy tree, the 

knowledge that are common between the two can then be deduced using
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the background knowledge provided by the more general one.For 

instance, the concept Animal properly contains the concept of Mammal. 

Therefore, by imposing conditions on Animal such as

Is-a (x, Mammal) => Is-a (x, Animal), and 

Feed-milk (x) => Is-a (x, Mammal), 

we can deduce all properties of Mammal from Animals,

c) Problem domain covers other domains - On the other hand, if the 

new domain covers some existing domains, then the new domain can be 

learned by generalizing the existing ones. Unlike climbing down the 

hierarchy tree which is truth preserving, climbing up the hierarchy tree is 

false preserving. This is because the generalization process, which is 

basically an induction procedure, does not guarantee to produce 

knowledge that are valid for the new domain.

2) Problem type - Problems, despite their domains, can be classified 

into generic tasks (eg. planning, classification) as proposed in 

[Chandrasekaran 1986]. In fact, techniques have been developed to 

acquire knowledge for some generic tasks. These techniques might adopt 

different learning strategies. Thus, given a problem that can be classified 

into a generic task, existing learning strategies for this generic task can be 

applied.
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3) Availability of expertise - In cases when there is an abundance of 

expertise or the cost of expertise is low, it is feasible to adopt less 

complicate learning strategies such as rote learning and deductive 

learning. However, in situations where expertise is scarce and costly, a 

learner has to play a more active role in inferring the knowledge from the 

limited knowledge sources. Learning by analogy and induction are 

resorted to in these situations by transferring the load from the experts to 

the learners.

In order to carry out the task of knowledge acquisition in an effective 

manner, a system should not be restricted to a single learning strategy. 

Indeed, existing systems usually exhibit hybrid learning behavior.

1.3. A Framework of Knowledge Acquisition Systems

Fig. 1.1. depicts a framework of knowledge acquisition systems in 

the form of a grid. The vertical dimension represents die various learning 

strategies discussed in the previous section. To implement a learning 

strategy (or combination of strategies) chosen along this dimension, the 

designer of a knowledge acquisition system has to decide on the issues 

shown on the horizontal dimension - knowledge representation and 

elicitation, learning operator, and learning criteria. Together with the
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Fig. 1.1. A Framework of Knowledge Acquisition Systems
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learning strategy, these correspond to the essential attributes of a 

knowledge acquisition system. Our framework does not intend to serve 

the purpose of a taxonomy for knowledge acquisition systems. Yet, it 

attempts to assist the design of these systems by identifying the essential 

features and the crucial design issues.

1.3.1. Knowledge Representation and Elicitation

The issue of knowledge representation is concerned with the 

specification of a scheme to state concepts and their relationships. A 

number of knowledge representation schema have been proposed [Chang 

1973], [Quillian 1968], [Minsky 1975]. Some are designed for specific 

application [Shortliffe 1976] whereas others are for common sense 

reasoning [Schank 1975], [Minsky 1975], [McCarthy 1968], [Raphael 

1968]. One question encountered in designing knowledge acquisition 

systems is how die final form of knowledge can affect the knowledge 

acquisition process ? Answer to this question is crucial to the selection of 

a knowledge acquisition methodology. The question can be broken down 

into three more refined questions - 1) What are the different forms of 

knowledge ? 2) What are the criteria in selecting knowledge representation 

forms? 3) How to elicit knowledge from experts ? Here, a distinction is
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drawn between the grand process of knowledge acquisition and the more 

specific task of knowledge elicitation. The latter is merely concerned with 

the articulation of expertise and the provision of tools to facilitate it.

1.3.L1. Knowledge Forms and Selection Criteria

The notion of generic tasks suggested by Chandrasekaran [1983], 

[1984], [1986] provides a direction in addressing the first two questions. 

In [Chandrasekaran 1986], a generic task is defined as "basic 

combinations of knowledge and inference strategies that are powerful 

for dealing for certain kinds of tasks". For instance, medical diagnosis 

and fault detection can both be categorized as classification tasks. Both of 

them involved mapping data (symptoms and defectives) to decisions 

(diseases and faults). The two problems, though different in their 

domain areas, are structurally similar in their solution methods - 

diagnosis rules. Based on the notion of a generic task, it is natural to 

have different generic knowledge acquisition methodologies associated 

with different generic tasks. The mapping is shown in Fig. 1. 2.

In view of existing systems, there seems to exist evidences to support 

the above problem-task-knowledge-acquisition mapping. Here, we focus 

on the latter part of the mapping (i.e. between knowledge forms and
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acquisition techniques). Let us briefly review common classes of 

knowledge representation and their learning techniques.

Logic - Mechanical theorem proving [Chang 1973] as the knowledge 

processing technique is employed by expert systems using First Order 

Logic (FOL). Facts and relationships are stated as logical statements. A 

logical statement is a collection of primitive assertions (ie. predicates) 

connected by logical operators (eg. AND, OR, NOT). Learning 

techniques have been developed to acquire knowledge stated in FOL or 

the likes. Sammut described a system MARVIN [Sammut 1981] that 

can learn a

concept stated in Prolog like statement by generating instances of the 

concept (eg. the geometric configuration of an arch) and check with the 

expert whether they are consistent or not. If an instance is too general, it 

will be specified until it is consistent with the expert's conclusion. In 

[B untine 1986], Buntine discussed an induction algorithm for Horn 

Clauses. Given a collection of Horn clauses, the algorithm infers 

relationships between these clauses by generalizing the initial set of 

clauses . PLANT/DS, a system developed by Michaski and Chilausky 

[1980] to acquire soybean disease diagnosis rules, used an extend version
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of FOL called APC - Annotated Predicate Calculus.In these systems, a 

logical statement is a description of a concept or an object Interestingly, 

induction is the popular strategy used to leam a concept Examples of a 

concept are stated in terms of logical statements. The generic approach is 

to generalize these statements to ones that are more descriptive and at 

the same time consistent with the given examples. More will be discussed 

on learning operators in the next section.

Semantic Network/Frame - Marker propagation is used in semantic 

network based knowledge systems in problem solving. Using semantic 

network, concepts are represented in the form of graphs with nodes 

representing instances, concepts (Color) and attributes (eg. Blue), and 

arcs representing relationships (eg. is-a) Frame is a restricted form of 

semantic network [Minsky 1975] which has been used for common sense 

and default reasoning. This is made possible by the default slots of a 

frame. By assuming default values for these slots unless otherwise 

specified, generic schema for classes of problem solving methods can be 

represented. In [Winston 1975], Winston presented a learning program 

that learned the structural descriptions of objects in the block world using 

induction technique. Examples of an object are provided. These examples
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take the form of graphs. Differences and similarities between examples are 

derived by matching pairs of graphs. Three kinds of match for both nodes 

and links are defined : completely match, partially match, and does-not 

match. Information obtained is used to control the search of a general 

description of the concept.

Production Rules - Knowledge in the form of IF-THEN rules is another 

common knowledge representation scheme. Production rule is similar to 

logic in its form of representation. The condition and conclusion of a rule 

can be readily translated into two conjunctive statements with the former 

implying the latter. Thus, learning techniques associated with logic can 

be applied in rule based systems as well. However, there are basic 

differences between the two in their inference mechanisms. Instead of 

having only one inference mechanism (resolution-refutation), different 

inference procedures are adopted in different production systems. For 

instance, backward chaining is used in MYCIN [Shortliffe 1976] while a 

recognize-act cycle is adopted in OPS5 [Forgy 1981] as the inference 

mechanism. Intelligent knowledge acquisiton systems called rule 

acquisition systems such as RULEGEN in meta-DENDRAL [ Buchanan
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and Mitchell 1978] and AQ11 [Michalski and Larson 1978] have been built 

to acquire rules using the induction approach.

Although not completed, the forms of knowledge discussed above 

cover a large portion of existing expert systems which associated with a 

wide range of generic tasks (eg. script, classification, planning). The 

notion of classifying problems into generic tasks enables us to select a 

knowledge form which is the most appropriate for a given problem. Once 

a knowledge form is chosen, the acquisition technique follows 

accordingly. Thus, it seems plausible to design generic acquisition 

procedures for generic tasks. In search of a classification scheme for 

generic tasks, however, problems remain in deciding the set of criteria of 

the classification scheme. Nevertheless, it provides a framework to guide 

knowledge engineers to relate task domains to knowledge forms and to 

die selection of acquisition techniques.

I.3.I.2. Knowledge Elicitation - A Psychological Approach

Once a knowledge form is selected, the next step is the eliciting and 

coding of expertise. The encoded knowledge might not be in its final form. 

This initial chunk of knowledge provides the basis for further refinement
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and modification. In learning by induciton, this corresponds to the 

examples that will be generalized by the induction procedure.

As mentioned in Section 1.1., expert knowledge are difficult to elicit 

in situations when they are not subject to conscious introspection. Expert 

knowledge usually contain context senstive concepts which are difficult to 

articulate in isolation from others or without a proper context. For 

instance, an expert in political affairs might not accurately express his 

assessments on current U.S./U.S.S.R relation without referring to 

previous events. Furthermore, it is easier for the expert to focus on 

certain traits of a concept at a time rather than to come up with grand 

statements describing it. This is also true in making comparisons between 

concepts. Comparing pairs of concepts are more informative than between 

a concept and a group of concepts. Despite the advantage of fragmenting 

the knowledge domain, problems remain as how to synthesize back the 

individual knowledge fragements.

There is an emerging role of Psychology in this endeavor. 

Numerous knowledge acquisition systems have been built using 

techniques from psychology. These techniques, embracing personal 

construct theory, multidimensional scaling, and clustering, are 

generally called measurement and scaling techniques.
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These techniques provide methodologies to measure, compare, and 

categorize fuzzy concepts, especially perceptions and physical feelings 

which are difficult to articulate by experts in absolute terms. In medical 

diagnosis where the feeling of a patient is an important factor in 

determining a diagnostic action, these measurement techniques have 

been valuable tools to elicit this information. They are suggested in 

[Gammack & Young 1984] as means of eliciting knowledge form experts 

for the purpose of building expert systems. Let us briefly review these 

techniques.

Personal Construct - The personal construct theory proposed by Kelly 

[19SS] suggested that each individual seeks to predict and control events by 

creating theories of the world. Furthermore, these theories exist in the 

form of constructs in each person's mind. Kelly defined a construct as a 

bipolar scaled dimension measuring the similarity and contrast between 

events. Personal construct theory has been the basis for systems such as 

ETS [Boose 1984], [Boose 198S] and AQUINAS [Boose and Bradshaw

1986]. Personal constructs are implemented in the form of repertory 

grids in these systems. In its simplest form, a grid consists of two 

dimensions - concepts and traits. Entries of a grid are numbers with values
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range from 1 to 5. Each number corresponds to a relative measure of a 

trait associated with a concept. To elicit knowledge from experts using 

this technique includes the followings : 1) identify the concepts, 2) identify 

the traits that discriminate the concepts in 1), and 3) fill in the entries of 

the grid form by 1) and 2).

Multidimensional scaling - Multidimensional scaling technique is a 

variant of least square fitting methods. The input data is a symmetric 

matrix with each element representing the distance between two concepts. 

Depending on the subject to be studied, the distance can be a measure of 

similarity or difference. In the context of medical diagnosis, entries of the 

distance matrix, for instance, might represent the relative degree of pain 

between pairs of heart diseases. The iterative algorithm then attempts 

to fit the distance matrix to the required dimensions by minimizing the 

stress [Kruskal 1964]. Plots showing the relative positions of concepts can 

then be obtained for different pairs of dimensions. The meaning of each 

dimension is still subjected to human interpretation. For the purpose of 

eliciting knowledge, the technique can be used in both direction. In the 

reverse direction, this is done by presenting to an expert a plot of concepts
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and ask the expert to locate the appropriate position of the new concept on 

the map.

Clustering - Clustering technique is generally used as a taxonomical tool 

[Johnson 1967]. Input to the cluster procedure is a symmetric distance 

matrix and a number specifying the number of clusters to be formed. 

The dimensions of the matrix is the same as the the number of data objects. 

There are various types of clustering procedure with hierarchical 

clustering procedures being the most common one. In an iterative fashion, 

a hierarchical procedure searches and merges the closest pair of objects 

into one object until the number of objects is reduced to the required 

number. The output is a taxonomy of the objects in the form of a tree.

1.3.2. Learning Operators

During the learning process, knowledge is constantly being revised 

or generated from existing ones. Learning operators are the means to 

alter the descriptions of a concept. These operators are actually functions 

that map a concept to another. Conceptually, there is no learning 

operator in a learning system based on rote learning because the student is 

not allowed to change the description of a concept once told by the



www.manaraa.com

27

teacher. However, for retrieval purposes, the form of representation 

might be changed, allowing an effective indexing structure to be 

constructed.

In case of a deductive learning system, learning operators correspond 

to the inference rules associated with the system. First Order Logic 

provides a formal model for many deductive learning systems. It 

provides a language to state knowledge and rules of inferences to 

make deductions. The knowledge so generated is not "new" but logical 

consequence of a deduction process. Modus Ponen together with 

universal generalization and existential generalization form the core of 

inferences rule in First Order Logic.

To learn by analogy normally requires the determination of a 

sequence of operations necessary to map a concept to another. The 

mapping process is the computational procedure associated with an 

analogy measure. Using the notion of problem space introduced by 

Newell and Simon [1972], Carbone 11 [1983] defined analogy learning as 

a process of mapping and searching in two spaces - the original problem 

space and the analogy transform problem space. A solution to a problem 

represents a path in the problem space. To solve a similar problem using 

the analogical approach, existing solution of a similar problem is
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mapped into the analogy transform space as a point representing the 

initial state of the transform space. A series of transformation is applied 

to the initial state until a new state in the transform space that satisfies the 

specification of the new problem is obtained. The new state in the 

transform space is then mapped back to the original problem space as a 

solution path for the new problem. Under CarboneU's framework, the 

transformation operators are the learning operators that perform the 

mapping process.

In learning by induction, despite the form of knowledge selected, 

there are basically two kinds of operators for systems using induction 

techniques, namely, generalization and specialization operators. For 

example, the concept Person(John) can be generalized to for all x, 

Person(x). On the other hand, by imposing more condition to the 

concept, it can be specialized to

For all x, Student(x) => Person(x)

That is, John is a person only if he is also a student. These two kinds of 

operators vary in their operations under different knowledge forms. Yet, 

they all serve the functions of

1) generalizing a concept

2) specializing a concept
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In [Michalski 1983], these operators take the form of rewriting rales. 

Some of the essential operators are listed below:

In [Winston 1975] semantic network is used to represent structural 

objects and their relationships. Examples of a concept such as an arch 

is represented by graphs. Generalizations and specializations of concepts 

take place by evoking graph operations - deleting, adding, and comparing 

links and nodes.

The selection of learning operators depends on 1) the learning 

strategy used and 2) the knowledge representation form. Therefore, it 

is essential to define these two attributes of a knowledge acquisition 

system before the issue of learning operators can be addressed.

4. Climbing generalization tree

Generalization Operators

1. Dropping condition

2. Adding alternative

3. Extending reference

Specialization Operators 

Adding condition 

Dropping alternative 

Closing reference 

Climbing specialization tree
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1.3.3. Learning Criteria

Learning criteria determine the goal of a learning process. Some of 

these criteria might be in conflict with one another and a compromise is 

usually required to resolve this. In rote learning systems, the obvious 

criterion is that the knowledge acquired is identical to the ones supplied 

by the teacher. The student simply makes sure that all instructions are 

received and properly indexed.

In the case of deductive systems, the basic criteria are consistency 

and completeness. In logical terms, consistency means, given an 

interpretation, all true statements can be deducted using the inference 

rules. Completeness refers to the ability to find a contradiction if one 

exists. Ideally in learning by deduction, new knowledge acquired from 

experts or generated by the system itself should satisfy these two criteria. 

Yet, the two criteria are seldom satisfied in practice deal to limited 

computation resources.

In systems that leam by analogy, learning criterion is based on die 

similarity measure defined by the system. The analogy measure is 

expressed as a function that map two concepts to a real number as 

follow:
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Analogy: Dom(Concept)XDom(Concept) ->  R, 

where Dom(Concept) denotes the domain of a concept.

The simplest example of an analogy is the function absolute 

difference (ie. II) of two real numbers. Given the definition is a 

topological one, for example, 3 is more closer to 4 than S. That is, 13-41 < 

13-51. For concepts that are multidimensional - one that can be described by 

a set of features. Tversky [1977] presented a similarity measure which 

defined on the feature set of a concept. The degree of similarity between 

two concepts increases with the size of the intersection of their sets and 

decreases with the size of the intersection of the two complement sets. 

For concepts that are identified by their structures, the measure of analogy 

is defined on the sequence of structural transformations required to 

transform a concept to another. Each transformation is given a weight (or 

cost). By adding up all the weights associated with a transformation 

sequence, one obtains an index indicating the similarity between the two 

concepts. One example is the measuring of distance of two sequences of 

symbols [Levenshtein 1966]. These measures are concerned with the 

apparent structural differences between two concepts.

For more complicate knowledge structures, Gentner in [1980], [1983] 

described a mapping process that transform a descriptive structure
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from one domain (base) to another (target). Predicates and relations are 

systematically deleted and added to the base structure to match with the 

target structure. The theory of structural mapping is the basis of CARL 

[Burstein 1983]. CARL is a learning system designed to learn the 

semantics of assignment statements for the BASIC programming 

language. Concepts such as PUT-IN-BOX are stated in frame like 

structures. During the learning process, CARL draws on analogy 

between variables in a computer and objects in a box. The success of 

analogical learning depends heavily on the choice of the analogy measure 

[Winston 1980]. However , a general measure of analogy is difficult to 

determine. This is especially true when tire meaning of analogy between 

two concepts varies under different perceptions and situations.

Angluin and Smith [1983] surveyed different induction methods 

and criteria from both the practical and theoretical standpoints. In 

general, there are two fundamental criteria pertaining to learning by 

induction namely, simplicity and goodness of fit.

Simplicity - In learning a concept, a simple yet powerful description is 

most desired. Simplicity can be interpreted as the general applicability of a 

concept description. A very specific description might find itself too
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limited to be applied in different settings. Furthermore, human tend to 

form stereotype of concepts for the purposes of efficient storage and 

prediction. An induction procedure, which is designed to replace 

knowledge engineers in acquiring expert knowledge, should consider this 

cognitive behavior as a primary criterion.

Goodness of fit - A simple description, however, might be too broad to 

apply in other situations. In order to be useful, specific instances of a 

concept cannot be generalized too much. To restrict the degree of 

generalization, examples of a concept is provided to guide the 

generalization process in such a way that the final concept description 

obtained should be consistent with the examples provided.

These two criteria exist in various forms in different learning 

systems. In [Larson and Michalski 1977],[Hayes-Roth 1976], they take 

the form of maximally-specific conjunctive generalizations (MSC- 

generalizations). A conjunctive generalization is a description of a 

concept obtained by forming the conjunction of a group of primitive 

statements (eg. predicates). A maximally-specific conjunctive
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generalization is the most detailed description that holds true for of all 

examples of the concept.

However, MSC-generalization is primarily used to generate 

description for a set of positive examples. Only positive traits of the 

examples are taken into account, making the MSC-generalization too 

general to apply in other circumstances. To overcome this, negative 

examples of a concept are also used to restrict the degree of 

generalization. When negative examples are used, the criteria take the 

form of two parameters which specify the number of positive and negative 

examples covered and rejected by a rule [Tam, Holsapple and Whinston

1987]. A special kind of negative examples called Near-Miss examples is 

suggested by Winston [1975] to control tire generalization process. A 

Near-Miss example is a negative example that differs in one attribute 

from the concept. Near-Miss examples offer valuable information in 

identifying a concept. Yet in general, Near-Miss examples are difficult to 

obtain.

1.4. Conclusion

In this chapter, we have presented a framework for building 

knowledge acquisition systems. The interplay between learning strategy,
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knowledge form, learning operator, learning criteria, and their 

influencing factors arc summarized in Fig. 1.3. Each circle represents an 

attribute which has to be determined during the design process. 

Squares denote factors affecting the decisions pertaining to an attribute. 

Arrows representing dependence relationship. Implications 

derived from

Fig. 1.3. can serve as guidelines in designing a knowledge acquisition 

system by

1) identifying the essential attributes of a knowledge acquisition system 

- We have identified four attributes : learning strategy, knowledge 

representation and elicitation, learning operator, and learning criteria, 

attributes.

2) identifying the intimate relationships between these attributes and the 

factors pertaining to the application domain - There are a number of 

factors affecting the choice of each attribute. As shown in Fig. 1.3., the 

choice of a learning strategy depends on three factors : problem domain, 

problem type, and availability of expertise. The notion of generic tasks 

enables us to select a proper knowledge form by classifying problems into 

generic tasks and to map these tasks to their representation forms. For 

knowledge that is difficult to elicit, measurement and scaling techniques
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Domain
Hierarchy

Fig. 1.3. Dependence Relationship between the Four Attributes and their
Influencing Factors
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are suggested. As soon as a learning strategy (or combination of strategies) 

and a knowledge form is determined, the definitions of learning operators 

and teaming criteria follow accordingly.

3) providing a framework for the design procedure - The following 

outlines a design procedure as implied by Fig. 1.3. First, the problem 

domain and types are identified. Next , the new problem domain is 

compared with existing knowledge domains to discover the various 

relationships (see Section 1.2.). Information obtained is used to choose a 

teaming strategy. Given a generic task classification scheme, a proper 

knowledge form is selected. At this point, both the attributes of knowledge 

representation and teaming strategy is defined. The next step is to elicit 

expertise and encoded them in the knowledge form selected. To elicit and 

ecode this knowledge might require application of phychological 

techniques in situations where expertise is difficult to articulate. Finally, 

the issue of learning operators and learning criteria are defined. As 

mentioned in Section 1.3., these two attributes depends on the learning 

strategies selected.
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CHAPTER 2

KNOWLEDGE REFINEMENT OF EXPERT SYSTEMS

2.1. Introduction

The conventional way of organizing an expert system as depicted in 

Fig.2.1. does not provide adequate interfacing between the knowledge 

acquisition system and the other components of an expert system. 

Knowledge acquisition and refinement are mostly manual tasks that are 

performed exogeneous of the expert system. The revised knowledge is 

then transplanted back to the knowledge base. The process is laborious and 

renders it very inefficient and uneconomical to apply expert systems in 

rapid changing domains.

In general, the term "knowledge acquisition" refers to the process of 

collecting domain specific knowledge from human experts. The various 

techniques to acquire knowledge have been discussed in the previous 

chapter While knowledge acquisition is a "one shoot" process, knowledge 

refinement is a continuous process which is performed during the entire 

life-span of an expert system. In fact, the life-span of an expert system is 

directly determined by the validity of its knowledge base, which in turn is
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User

Fig. 2.1. Conventional Organization of an Expert System
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determined by the extent knowledge is refined to match up with the 

changing domain. Knowledge refinement is a major issue in die study of 

expert system and is of great concern to both practitioners and academics. 

However, not much work have been done so far in this area.

2.2. Knowledge Refinement

The principle of knowledge acquisition as discussed in Chapter 1 is 

generalized to knowledge refinement. We define the process of knowledge 

refinement as a sequence of knowledge acquisition tasks with each 

triggered by an updating signal generated by the user or by the expert 

system itself. The idea of updating signals is to alert the expert system that 

the validity of the knowledge base has fallen below a threshold level and 

need to be revised.

2.2.1. A Measure of Knowledge Base Validity

The validity of knowledge base is difficult to measure on an absolute 

basis because expert system is basically a program that imitate the 

reasoning process of human experts. The best benchmark of the 

performance of an expert system is that of human experts. The validity of 

a knowledge base could then be mesaurcd by comparing the conclusions
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generated by the expert system with those proposed by human experts in 

solving identical problems. For instance in medical diagnosis, diagnostic 

decisions of the expert system and the physicians can be compared to 

identify any discrepancy between the two parties. If die conclusions are so 

far off, then the knowledge base of the expert system is concluded to be 

invalid and has to be revised.

Using human experts as the oracles, we can provide a benchmark in 

assessing the performance of an expert system. Since conclusions are 

deduced from the knowledge base, the performance of an expert system 

could be determined by the validity of the stored knowledge. This permits 

us to use the performance measure to assess indirectly tire validity of the 

knowledge base. However in using the same measure to evaluate 

performance and knowledge base validity, we have implicitly made the 

assumption that the inference mechanism of the inference engine does not 

deviate much from human experts. This assumption is justified in the sense 

that the way inference is made does not change as drastically as the 

knowledge itself in most situations. Yet we should bear in mind that there 

is still a chance that the declining performance of an expert system is not 

due to an invalid knowledge base but rather to an invalid inference 

mechanism.
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2.2.2. Updating Signals

Updating signals are generated internally by the expert system or on 

request by users. Updating requests are generated internally when the 

performance of an expert system has fallen below a threshold level. To 

implement this, we need a log of conclusions generated by the expert 

system and audit them periodically. Depending on the degree of accuracy 

required, all elements in the log is used or only a portion of which is used 

in performance estimation. In the latter case, we need to determine the 

sample size and the acceptance level of the sample.

Expert systems organized in this way are self-controlled systems that 

adjust themselves to changing domains by responding to feedbacks from 

users or signals generated internally (Fig. 2.2.). The performance of an 

expert system is the control parameter of the entire system. It sets forth the 

criterion of revision and its value is determined by the log of previous 

conclusions.

The knowledge base can also be updated on request by users. This 

happenr when 1) a user wants to change the threshold value of the 

performance measure, or 2) a user want to add or delete knowledge from 

the knowledge base. In both cases, the validity of the knowledge base may
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Fig. 2.2. Knowledge Refinement using Updating Signals
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no longer in compliance with the given threshold value and need to be 

updated

2.3. An Architecture to Integrate Knowledge Refinement in 

Expert Systems

A generic architecture that support knowledge refinement is shown in 

Fig. 2.3. It consists of five functional components : 1) interface, 2) 

inference engine, 3) knowledge base, 4) knowledge refiner, and 5) 

decision log. The first three are the basic components of an expert system. 

The knowledge refiner and decision log are additional components that 

provide die mechanism and the information to refine the knowledge base.

The interface provides input/output media between users and the 

other components. It should provide user friendly interface that are easy to 

comprehend. It can be streamlined to certain group of end users and may 

take the form of icons, queries, natural language, graphics, image 

recognition, or real time signals from other devices.

The reasoning function is performed by the inference engine. It is 

implemented as a control procedure that determines how knowledge is 

combined and processed. The reasoning process can be forward or 

backward. In a forward reasoning process, knowledge is deduced from a
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Fig. 2.3. An Expert System Architecture with Knowledge Refinement
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collection of known facts. In backward reasoning, the process is reversed: 

it starts from a hypothesis and check whether it can be validated from the 

existing knowledge base. In a rale based system, they are commonly 

referred to as forward and backward chaining respectively.

In a knowledge base, there are many forms of knowledge including 

procedural knowledge, reasoning knowledge, presentation knowledge, 

and model knowledge. This is the reasoning knowledge that distincts a 

knowledge base from a conventional database system. Thus, the proposed 

architecture is primarily concerned with reasoning knowledge in the 

context of knowledge refinement.

The function of the decision log is to keep track of the changing 

reasoning process of human experts. Decisions generated by an expert 

system is stored in the log. By doing so, an expert system can evaluate its 

performance in terms of the number of contradictory decisions between 

human experts and the expert system. Decisions are recorded in the form 

of reasoning chain. A reasoning chain is the sequence of inference steps 

that lead to a decision. Entries in the decision log are audited periodically 

by experts to check for contradictory decisions. When a decision is 

audited, the entire reasoning chain of the decision is examined. Conflicting

/
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decisions along the reasoning chain are identified and updating signals are 

then generated accordingly to refine the knowledge base.

Once die number of contradictory decisions in the decision log has 

fallen below a tolerance (threshold) level, an updating signal will be 

generated to inform the knowledge refiner to revise the knowledge base. 

The function of a knowledge refiner is to update the knowlege base using 

the knowledge acquisition techniques discussed in the previous chapter. 

The input of the knowledge refiner are the conflicting decisions and the 

existing knowledge base. The output would be a new knowledge base that 

satisfies the tolerance level.

Like the other components, the knowledge refiner and the decision 

log are permanent integrated components of an expert system and operate 

on a continuous basis.

2.4. Concluding Remarks

We have extended the conventional architecture of expert system to 

incorporate a mechanism of knowledge refinement. Two functional 

components , decision log and knowledge refiner, are added to provide the 

information and mechanism to refine the knowlege base respectively. In 

the next two chapters, task specific reasoning systems are studied under

ft
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this architectural framework. The two tasks are pattern recognition and 

classification. Furthermore, these two tasks are applied to the domain of 

security trading. Our intent is not to study security trading per sec but 

rather to provide a realistic setting to demonstrate the applicability of the 

proposed architectural framework in different task domains.
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CHAPTER3

PRICE MOVEMENT PATTERNS REPRESENTATION, 

ACQUISITION, AND REFINEMENT

3.1. Introduction

In this chapter, we will study the task of pattern recognition in the 

context of security trading. We will primarily focused on the following 

four issues : 1) Pattern knowledge representation, 2) Pattern recognition 

mechanism, 3) Noisy pattern discrimination, and 4) Pattern knowledge 

acquisition and refinement. Before we precede, let's briefly review the 

practice of price movement pattern recognition, commonly called 

technical analysis in the security industry.

3.1.1. Background

In formulating a trading strategy, a trader may study the 

movements of security prices in the hope of discovering trends and 

patterns on which he can capitalize. Numerous techniques have been 

proposed to aid traders in this aspect. They range from simple high/low 

point charts to complex trend-following programs that require
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considerable computing resources. These techniques are collectively 

referred to as technical analysis. The practice of technical analysis is not 

uncommon, despite its lack of theoretical justification. The common 

denominator of these techniques is their assumption of the validity of 

historic information in predicting price movements. This is contrary to 

the Maiket Efficiency Hypothesis which contends that movements of 

security prices follow a random process. Yet, it does not obscure the fact 

that technical analysis is used daily by traders across a broad range of 

securities. Evidently and practically, it serves the function of decision 

support rather than "fortune teller" as most theorists perceive.

Automation of technical analysis is at the present limited to 

trend-following programs. These programs use statistical techniques such 

as moving average and time series to forecast future prices according to 

past trends, alerting the trader when the actual price movement deviates 

from the forecasted trend. Trend following is limited in the sense that it 

can only detect deviations from the trend. Except for some simple ones, it 

is not capable of identifying more complex trends. More complicated 

patterns teg. valley, head and shoulder, Elliot wave e tc .) still have to be 

"eyeballed" by traders. In general, technical analysis is primarily 

concerned with recognizing patterns of price movements. In addition to

I;
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the basic set of patterns (e.g. head and shoulder, valley) commonly used 

in technical analysis, a trader might add his own set of patterns.

Under our refined view of technical analysis, which is pattern 

recognition, the task of automating technical analysis is reduced to 

provide the followings:

1) Pattern representation form

2) Mechanism to recognize and discriminate different patterns

3) Mechanism to handle noisy patterns

4) Techniques to acquire and refine pattern knowledge

In this chapter, formal language theory is applied to address these 

four issues. The rest of the chapter is organized as follows : Section 3.2. 

reviews the application of statistical discriminant analysis in pattern 

recognition and discusses its drawbacks. In Section 3.3., formal language 

is used to describe price movement patterns, and the task of pattern 

recognition is reduced to parsing a sentence with a set of phrase structure 

grammars. Section 3.4. will address the issue of pattern knowledge 

acquisition and refinement from an architectural perspective based on 

Chapter 2.

h
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3.2. Statistical Pattern Recognition

One approach to the task of pattern recognition is statistical 

discriminant analysis. A pattern such as the one in Fig. 3.1. is 

segmented into n-1 identical divisions. Thus, die continuous time span of 

a pattern is characterized by n discrete time spots. A pattern is

represented by an n-dimensional vector P = (h(t1),h(t2),...Jh(tn))T where

h(tj) is the price of the security at time t*. The time interval between 

consecutive time spots is determined by the trader and it varies according 

to the time frame associated with a trading strategy. For instance, an 

arbitrage strategy in foreign exchange might require a very short time 

interval, say fractions of a second. Given a specific time frame, different 

patterns are represented by different pattern vectors. Price patterns are 

points in an n-dimensional Euclidean space called the pattern space. The 

task of pattern recognition is to partition the Rn pattern space. The 

objective is to group similar patterns into the same partition and to 

provide decision rules that classify patterns into different pattern classes. 

These d< nsion rules take the form of discriminant functions. For each 

partition which represents all the possible forms of a pattern (e.g. valley 

), it is associated with a discriminant function D. D is a function
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|dM

Fig. 3.1. Price Movement Segmentation
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which maps Rn to R. Suppose the pattern space is divided 

into M partitions G^Gj.-.G,* , with each corresponding to a pattern class. 

There will be M discriminant functions D1(D2, . . , DM. To recognize a 

price pattern, say P, the M discriminant functions are applied to Vp - 

the pattern vector representing P. The values of D,(Vp), D2(Vp),.. 

DM(Vp) are then compared with each other to determine to which partition 

Vp belongs. Suppose Dit 1 £ i £ M represents the function that measures
i

how likely Vp is an element of G j; the decision rule might be defined as 

follows:

Vp ~> Gk such that Dk(Vp) * max {D1(Vp),D2(Vp),...DM(Vp)}, 1 £ k  £ M

If k assumes more than one value, then one pattern class is arbitrarily

selected and Vp is assigned to it. This approach to pattern recognition is

also called tire decision theoretic approach.

In general, the task is composed of two procedures, namely 

classifier construction and evaluation. Classifier construction is concerned 

with the construction of pattern boundaries which are based on a set of 

training samples. The partitions so constructed are evaluated by another
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set of pattern samples to estimate how well the classifier performs in 

discriminating different patterns.

3.2.1. Classifier Construction

Given M classes of patterns, die entries of the training set are samples 

of each of the M patterns. For instance, a head and shoulder pattern might 

exist in slightly different forms as shown in Fig. 3.2. The function of this 

procedure is to consider a number of different head and shoulder 

patterns and to provide a compact form that adequately represents the 

entire class of head and shoulder patterns under a particular time frame. 

This is then repeated for other pattern classes. Obviously, the result 

depends very much on how fairly the sample represents the actual 

pattern. Bias samples will certainly degrade the accuracy of the 

procedure, and the result obtained will be misleading.

Statistical techniques come into play by assuming each pattern class is 

associated with a probability distribution. The most common approach is 

to assume that elements of a pattern class are distributed normally in Rn. 

Consider the case of discriminating M pattems.The first step of 

constructing a classifier is to estimate the parameters of the

h
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*1 • • • «£ • • * *  i i a *

Fig. 3.2. Two Head and Shoulder Patterns in the Pattern Space
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multivariate normal distributions, N(p.j J)j), N( î2,Z2),...N(jxm,Zm). The

sample patterns in the training set are used for the estimation.

Using die sample mean vectors and sample covariance

matrices one obtains unbiased estimates of the parameters.

The next step is to construct boundaries that separate these disributions. 

The construction of boundaries is driven by some predefined discriminant 

criteria. These criteria might be to minimize the maximum error, 

minimize total error, and to maximize interpartition distances etc.

Let us consider one that minimizes the expected cost of 

misclassification. The expected cost of misclassification, denoted by ECM, 

is defined as follows:

M M

ECM = Z p ,(Z P ( jl i) ) ,  inwhich (3-1)
i=l j=l,

j*

Pi -  the prior probability of the i pattern class,

P( j I i ) = probability of misclassifying a pattern of the i class to the j class. 

The objective is to determine partitions Gj,G2,..Gm in Rn in such a way that
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(3-1) is minimized. It can been proved that minimizing (3-1) is defined by

allocating x e  RB to Gk, k *1,..,M, for which

M

XMOO. (3-2)
i*l,
h4

fj(x) = probabality function of Gj

is smallest. (3-2) is smallest when the omitted term, p ^ x )  is the largest. 

Thus, we have the following decision rale:

x -> G k if pkfk(x) > pjfi(x), Me (3-3)

Since pkfk(x) and pjfj(x) are always positive, (3-3) is equivalent to (3-4).

x ~> Gk if ln(pkfk(x)) > ln(pjfi(x)), Me , 1 £ i M (3-4) 

Here, f|(x) is a multivariate normal probability function. That is,

fj(x) = (2ji)->/2 I r { I exfK-fx-n^TXj'fx-H,)^) , l £ i £ M  (3-5) 

We then have the following decision rale :

x --> Gk if Dk(x) > Dj(k), i?4c, (3-6)

where D,,D2,..-DM are the discriminant functions obtained by substituting 

(3-5) in (3-4).
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Dj(x) * -(In I Ej l)/2 - (x -^ T S j-K x -^  + ln Pi, 1=1,2,...M (3-7)

Estimates of Pi, p,', i=l,..M, can be obtained by counting the number of 

patterns belonging to 0 { from the pooled Pattem samPle set. Unbiased

estimates of £ i and ji|t 1 £ i £ M, can be obtained from samPle mean

vectors Pi' and samPle covariance matrices £■', 1 ^  i ^  M. Using these 

estimates, we obtain the estimated discriminant functions D /, D2' , ... DM’ 

as follows:

D|'(x) = -(In I Zj' l)/2 - (x-jij'jTEj-Kx-jij'yi + In Pi' , 1=1,2,...M (3-8)

The output of this optimization procedure consists of hyperplanes 

separating the different pattem classes in the pattem space. These 

hyperplanes are defined by the estimated discriminant functions which are 

linear.

3.2.2. Evaluating Classifier

The discriminant functions so derived have to be evaluated with 

another st of sample patterns. There are a number of techniques for 

testing the discriminating capability of these functions. One commonly 

used technique is to divide the training sample and testing sample into



www.manaraa.com

60

equal halves. Performance of a classifier is calculated as a ratio of the 

number of misclassifications to the size of the testing sample. Quite 

obviously, the larger the size of the training sample, the less likely the 

discriminating functions will be distorted by bias sample patterns. Using 

the training sample for testing will probably underestimate classification 

error and should be avoided. Given a fixed number of sample patterns for 

each pattern class, tradeoffs have to be made between the size of the 

training sample and that of die testing sample.

A general procedure for constructing a pattern classifier using 

statistical techniques is depicted in Fig. 3.3. This approach, however, falls 

short in discriminating structural identical patterns under different time 

frames. Consider the two valleys shown in Fig. 3.4. They share the same 

structural form but only differ in their time frames. Note that our 

previous discussions on pattern classification assume that all patterns have 

the same time frame. One solution to this problem is to extend the time 

frame of the smaller pattern to that of the larger one. The process is called 

normalization of patterns. The general procedure is then applied to the 

normalized pattern samples. The classification error so obtained might be 

very large because the two pattern vectors might locate far from each 

other in the pattern space. A partition defined to contain these two vectors

h
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... -Sample Pattern Sets 
I of m patterns

no. of correct classifications 
no. of misclasslfJcations

Construct Discriminant 
Functions

Divide each 
Sample Set 

Into
1. Ttaininc Sample
2. Testinc Sample

Estimate M Multivariate 
Normal Distributions

Testinc Classifier

Fig. 3.3. Procedure for Constructing Pattern Classifiers 
Using Statistical Discriminant Analysis
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Fig. 3.4. Two Valleys with Different Time Frames
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will probably be so large that a number of other patterns will also be 

included, thus increasing the error rate of die classifier. To overcome this, 

structural identical patterns under different time frames are characterized 

by partitions in different pattern spaces. In other words, pattern spaces of 

different dimensions are constructed for structurally identical patterns 

with different time frames. Consequently, the decision rule is stated as

"If a pattern vector falls within either of these partitions then conclude Vp 

belongs to this pattern."

This approach drastically increases the number of pattern partitions 

and becomes very inefficient when the number of time frames under 

consideration is large. To automate the task of pattern recognition 

effectively, we need a compact way to represent structurally identical 

patterns. In other words, we need constructs to state a pattern which is 

independent of the associated time frame. In the next section, this issue is 

addressed from the perspective of formal language theory.
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3.3. Linguistic Pattern Recognition

The linguistic approach to pattern recognition in this section employs 

lingusitic techniques of formal language theory in stating and recognizing 

different patterns. Formal language theory is the study of the mathematical 

structure of sets of strings [Aho and Ullman 1968]. The initial 

investigation of mathematical lingusitics aimed at trying to understand the 

basic properties of natural languages [Chomsky 1936]. In general, a 

language is defined as the set of sentences that can be derived from a set of 

symbols and a collection of rewriting rules (or grammar rules). The 

grammar rules determine how symbols are combined to form sentences of 

the language. The number of sentences so generated may be finite or 

infinite. Thus, mathematical lingusitics is a powerful tool to describe a 

large number of phenomena or patterns by using a finite set of symbols 

and a relatively small number of grammar rules. In fact, it has been 

applied in a number of engineering domains such as fingerprint 

identification [Moayer and Fu 1976], image analysis [Gips 1974), 

[Rosen celd 1979], [You and Fu 1979], and character recognition [Stallings 

1979], to name a few.

The lingusitic approach presented here differs from its statistical 

counterpart in the way structural information of a pattern is used in the

!>
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recognition process. In this approach, structural information of a pattern 

is organized in the form of a hierarchy. In essense, a pattern is derived 

hierarchically from a predefined set of primitive patterns. The derivation 

process is governed by a collection of grammar rules.

To illustrate this, the class of valleys can be described by a language 

with its grammar rules shown below.

<valley> —> <uptrendxdowntrend>

<valley> —> <downtrendxvalleyxuptrend>

<uptrend> —> /

<downtrend> —> \

Two valleys with different sizes and their derivations are shown in 

Fig.3.5.

In this paper, formal language theory is applied to the study of 

technical analysis. Different price movement patterns are described by 

different languages. Each class of patterns , say valley, is associated with a 

pattern language. Sentences belonging to such a language represent all 

possible valley patterns which are independent of the underlying time 

frames. As will be shown later, the recognition process is reduced to

/
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<V«Itoy> 

<dovntrendxVaIkyxTiptx»iid>

<do vntrendxdo vntrendx V «Jkyxaptr*ndxuptrend> 

<dovntnsnd> <do vn tnndxdo  vnt»nd><tiptm>dxuptniidxiiptrend>
I I t i l l
\ \ \ I I I

<V«lky> 

<dovntnndxVtUiyxuptnnd>

<dovntrBndxdovntx»rvd><upti«nd><upTrend>

J i l l  
' \ / /

Fig. 3.5. Two Valley Sentences with Different Time Frames 
and Their Derivations Trees
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parsing a pattern (coded as a sentence) with respect to the different pattern 

languages.

3.3.1. Representing Patterns as Languages

The langauge we use to describe a pattern belongs to the class of 

language that can be generated by a phrase structure grammar [Aho and 

Ullman 1968]. A phrase structure grammar is defined as a four tuple G, 

where

G = < V-p VN,P,S>, in which

1. VN and VT are the nonterminal and terminal vocabularies of G, 

respectively.

2. VN u  VT constitutes the total vocabulary set V of G and VN n  VT = 0.

3. P is a finite set of grammar rules denoted by a  --> p. where a  and p are 

strings over V with a  containing at least one symbol of VN.

4. S is the start symbol of a sentence and S e VN.

The language generated by G is defined as L(G) = { x l x e  VT* such 

thatS=> x}.L(G) is called the phrase structure language associated with 

G. VT* is the set of fmite-length strings of symbols in VT, including X, the 

symbol with zero length. The length of a sentence denoted by 1£ I is the

it
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number of symbols in S =>* x means that x is derived by systematically 

rewriting S using die grammar rules in P.

A class of patterns, say valley, is represented by a phrase structure

language. Elements of the language correspond to the different valley

patterns. One of the advantages of using this technique over statistical

pattern recognition is that it can represent an infinite number of

structurally identical patterns in a very compact form. To state a pattern

class is to define the four attributes VN, VT, P, and S of G.

3.3.2. Primitive Price Patterns

Primitive price patterns are the most basic components of a pattern.

They correspond to the terminal symbols in VT. In our previous example 

of a Valley, { \ , / } are the primitive price patterns we use to describe the 

class of valley patterns. The meaning of each symbol is provided by the 

trader. For example, 'V might denote that the asking price of IBM stock is 

down by $0.1 in the last minute. Or it might mean the ¥/$ exchange rate is

down by 0.5 in the last second. The meaning of each symbol in VT depends 

on the trading activity engaged in, which in turn determines the descriptive

ft
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power of the language. The descriptive power of VTis determined by the 

following:

1) Time interval of a symbol -  Since a sentence is composed of symbols 

concatenating in a sequence, it describes a series of events occuring in 

discrete time intervals. In order to approximate the continuous movement 

of prices, we have to decide on the time granularity of a primitive pattern. 

A better approximation can be obtained by reducing the time interval 

associated with a primitive pattern, making the pattern recognition 

mechanism more sensitive to short term price fluctuations. However, 

primitive patterns which span short time intervals may very likely 

incorporate undesired noises into a pattern, thus reducing the noise 

immunity of the recognition mechanism.

2) Number of primitive price patterns — Given a specific time granularity, 

a richer set of primitive price patterns is more descriptive, providing a 

better approximation to the actual price movement. In Fig. 3.6b., a richer 

set of primitive patterns is used, giving a better approximation to the actual 

price movement than Fig. 3.6a. which uses a subset of the former.
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3.3.3. Intermediate Price Patterns

Intermediate price patterns are patterns that are built up from 

primitive price patterns and other intermediate patterns. They represent

the sub-patterns of a pattern, corresponding to VN in G. For instance in 

our previous example, <downtrend> and <uptrend> are intermediate 

price patterns. They characterize the two sides of a valley. These patterns 

will not appear in the final pattern since all symbols in the final pattern are 

primitive patterns. They are used primarily as intermediate structures to 

construct the final patterns.

3.3.4. Grammar Rules Construction

The previous sections discussed the definition of VT ,VN 

respectively.

How the various primitive and intermediate price patterns are combined to 

form more complex patterns are defined by a set of grammar rules, P. 

These grammar rules specify how patterns and sub-patterns are 

construct d.

According to Chomsky’s hierarchy [1959a, 1959b] (Fig. 3.7.), phrase

L
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Unrestricted Onmmir 

Context Sensitive Grammar

Context Free Oremmar

Finite State Oremmar

Fig.3.7. Chomsky’s Hierarchy
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structure grammar can be classified into four different classes according 

to the form of the grammar rules.

1) Unrestricted grammar - there is no restriction on the grammar rules,

which might have any strings on either the right or the left of — >.

2) Context-Sensitive grammar - grammar rules are restricted to the form

where A e VN, ^ , ^ , B e  V*, B *  K  and I I <, I ^ B ^ j I . That is, A

can be replaced only in tire context of

3) Context-Free grammar - grammar mles are of the form

A~>B

where A e VN and B £ V*. and B * A.. Note that a grammar rule of such a 

form allows the nonterminal A to be replaced by the string B 

independently of tire context in which A appears.

4) Finite-State grammar - The grammar rules are of the form

A —>aB or A —>b

where A, B e VN and a, b £ VT.
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The question of which class of grammar to apply in describing a 

pattern class can be considered as one driven by the tradeoff between 

descriptive power and recognition efficiency. In terms of descriptive 

power, Unrestricted grammar is the most powerful amongst others. Since 

it properly contains other classes of grammars, it can describe patterns that 

cannot be described by other classes. However, determining whether a 

sentence is generated by an Unrestricted grammar is in general 

undecidable, not to say efficiency. On the other hand, sentences generated 

by a Finite-State grammar are easy to recognize. But its descriptive power 

is limited. Context-Sensitive and Context-Free grammars are 

intermediates which are recognizable and offer considerable descriptive 

power. In this thesis, we will focus solely on pattern classes that can be 

described by Context-Free grammars.

Using V j = {\ , /  }, a number of pattern classes are defined below. As

mentioned earlier, the semantics of ’V and "/” are defined by the trader. 

Notice that all these pattern classes are stated in Context-Free grammar.

Peak

By inverting a valley, one obtains a peak. A peak is defined as a pattern 

with an up trend followed by a down trend (Fig. 3.8a. and 3.8b.).

ft
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<Peak> --> <uptrcndxdowntrend>

<Peak> --> <uptrcndxPcakxdowntrend>

<downtrend> --> \

<uptrcnd> —> /

Zigzag

Using the pattern classes <Peak> and <Valley>, a pattern class called 

<Zigzag> which is defined as a sequence of peaks and valleys is shown 

below. Notice that Fig. 3.9a. and Fig. 3.9b. are not only different in their 

forms but also in their time frames. Classifier constructed using statistical 

discriminant analysis will very likely classify these two patterns into two 

different classes. Yet, they are generated by the same grammar, Zigzag.

<Zigzag> --> <PeakxValley>

<Zigzag> --> <ValleyxPeak>

<Zigzag> --> <PeakxZigzag>

<Zigzaj> —> <ValleyxZigzag>

<Valley> and <Peak> as described above.



www.manaraa.com

76

UjLSH

An up-8upport pattern is defined as a valley bounded by at least three V  

symbols cm both sides. (Fig. 3.10a. and Fig. 3.10b.)

<Up-support> --> <up> <Valleyxup>

<up> —> <uptrendxup>

<up> ~> <uptrendxuptrend><uptrend>

<uptrend> and <Valley> as defined above.

Pown-supgQit

Similarily, a down-support pattern is defined below, consisting of a peak 

with both sides bounded by at least three ' \ " symbols. (Fig. 3.1 la. and Fig. 

3.11b.)

<Down-support> --> <downxPeakxdown>

<down> --> <downtrendxdown>

<dowrt --> <Downtrendxdowntrendxdowntrend>

<downtrend> and <Peak> as described above.
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3.3.5 Recognizing Patterns

We have discussed how structural identical patterns can be concisely 

represented by a phrase structure grammar. We now turn to the problem 

of recognizing price movement patterns which is stated as follows :

Input: (1) a price pattern coded as a sentence

(2) a collection of pattern classes L(Gj),... L(GM)

Output: a decision showing which class the price pattern belongs to

In formal langauge, this is called the parsing problem. That is, given a 

sequence of symbols and a phrase structure grammar, determine whether 

the sentence can be derived by the grammar or not. Depending on the class 

a grammar belongs to, there are different parsing techniques called special 

purpose parsers. There are two generic approaches that these parsers are 

based on : Top-down parsing and Bottom-up parsing. In Top-down 

parsing, the symbol S is expanded by successively substituting 

nonterminals to try to fit the sentence. The goal is to discover a sequence of 

substitutions that transform S to the given sentence. In Bottom-up parsing, 

the method starts with the sentence and applies the grammar rules 

backward, trying to contract to the symbol S. In other words, the sentence 

is searched for subsentences that are the right parts of grammar rules. 

These are then replaced by the corresponding left side.
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Here, we present a parsing technique called Earley Parser [Earley 

1970] that is designed to recognize Context-Free language. Earley's 

algorithm is a Top-down parser that carries along all possible parses 

simultaneously in the form of parse lists.

Earlev Parsing Algorithm

Input : A Context-Free grammar G * <VN,VT,P,S> and an input string

W=8i&2&3“*&n’

Output: The parse lists l0,Ij,I2,...In for w.

Methods:

1. If S —> a  is in P, add item [S --> ,a,0] to Iq.

Perform 2 and 3 until no new items can be added to Iq.

2. if [B --> y., 0] is in Iq, add [A --> aB.p,0] to Iq for all [A --> a.Bp,0).

3. if [A --> a.Bp.O] is in Iq, add [B —> .y,0] to Iq for all B --> y in P.

4. For each [B ~> a.ap,i] in 1̂ ., such that a = aj, add [B --> aa.p.i] to Ij. 

Perform steps 5 and 6 until no new items can be added.

5. if [A - > a., i] is in Ij, add [B ->  aA.p.k] to Ij for all [B ->a.ApJc] in Ir

6. if [A ~> a.Bp.i] is in Ij, add [B --> .yj] to Ij for all B ->  y in P. 

where a, p, y e V*. A, B€ VN.
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Decision rule : if there are some items of the form [S --> ct.,0] in In, then w 

is in L(G).

Fig. 3.12. depicts a system that can discriminate different patterns. 

First, a grammar is constructed for each language. Second, movements of 

prices are coded as a sequence of symbols (sentences). By parsing a 

sentence with respect to each grammar, it is possible to decide to which 

grammar (pattern class) the incoming sentence (price movement) belongs. 

Notice that there might be two undecisive outcomes of the procedure :

1) More than one grammar exists that can successfully parse the sentence, 

so a pattern is classified into more than one pattern class.

2) The sentence cannot be parsed by any grammar. In other words, the 

pattern is not classified to any of tire given pattern classes.

The first situation occurs because L(Gj),L(G2),...L(Gn) are not 

disjointed. There are some sentences that are covered by more than one 

language, implying that these sentences can be generated by more than one 

grammar. There is no trival way to decide which class the pattern belongs 

to. A cla s can be chosen randomly or human judgments are resorted to in 

this situation. To avoid this undecisive result, care must be exercised 

in designing grammars in such a way that the final pattern classes are
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disjointed. Note that the grammar rules stated in the previous section are 

all disjointed. In the second case, the pattern is called a noisy pattern with 

respect to the given grammars. The pattern is distorted by the noise in such 

a way that it does not belong to any of the pattern classes. Yet, it is possible 

to decide which class a noisy pattern is most "likely" to be in. In the next 

sections, the problem of classifying noisy patterns is addressed and a 

procedure based on error-correcting parsing is used to discriminate noisy 

patterns.

3.3.6. Recognizing Noisy Patterns

The problem of classifying noisy patterns is to find a pattern class that 

the noisy pattern is most likely to belong to. A measure of likelihood or 

similarity between patterns is required to make comparisons. The measure 

is then extended to that between a pattern and a pattern class. The idea is to 

search for a pattern (sentence) from each pattern class (grammar) which is 

the most similar to the given noisy pattern. Amongst these patterns, the 

most similar pattern is chosen. The noisy pattern is classified to the class 

associateo with the chosen pattern. This is depicted pictorially in Fig. 3.13.
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3.3.6.I. A Measure of Similarity of Patterns

To measure the similarity of two patterns is equivalent to measuring 

how similar two sentences are. A metric to measure distance between 

sentences is adopted from [Levenshtein 1966]. The metric is defined on 

transformations. Three transformations are defined below :

1) Substitution transformation

w,aw2 —>* WjPw2, for all a , P e VT, a*p

2) Deletion transformation

wia W2 ->** w,w2, for all a  e VT

3) Insertion transformation

wiw2 ~>i w,ow2, for all a  € VT

where w,,w2 e VT*.

The distance between two sentences, x, y e VT*. denoted by dL(x,y), is 

defined as the smallest number of transformations required to derive y 

from x. 'Tie distance dL(x,y) is called the Levenshtein distance between 

two sentences. A weighted Levenshtein distance can be defined by 

assigning nonnegative weights w<i,wd,wl to substitution, deletion, and
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insertion transformations, respectively. Let T be a sequence of 

transformations to derive y from x ; the weighted distance between x and y

denoted by d^Cx.y) is defined as

d^Cx.y) * min {w,n, + wdnd + w f t  }
T

where ns, nd, and ^  arc the number of substitutions, deletion, and insertion 

transformations, respectively, in J. In cases when ws=wd=w( =1, we have

dwL(x,y) = dL(x,y). For example, to transform \ \ \ \ \ / \ \ \ / t o a  valley

requires three substitutions (see Fig. 3.14a.). However, only one substitution 

is required to t r a n s f o r m \\ \ \ \ / \ \ \ /  to a down-support (see Fig. 3.14b.)

3.3.6.2 Minimum-Distance Error-Correcting Parsers

Given a grammar G and a sentence y, the essene of error-correcting 

parsing is to search for a sentence x in L(G) such that

d(x,y) ® min (d(z,y) I z e L(G)} 
z

In other words, a minimum-distance error-correcting parser will 

find a price pattern associated with a pattern class which is the closest to the 

given pattern [Aho and Peterson 1972]. The procedure starts by expanding 

G to incorporate the three types of transformations in the form of

ft
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grammar rules, called error grammar rules [Tanaka and Fu 1978]. The 

expanded grammar G* includes not only L(G), but all sentences with 

the three types of transformations. The parser constructed according to G' 

with a provision to count the number of transformations used in a 

derivation is called the error-correcting parser of G. For a given y, the 

error-correcting parser of G will generate a parse which consists of the 

smallest number of transformations (or the smallest accumulated weight). 

A sentence x in L(G) that satisfies the minimum-distance criterion can be 

generated from the parse by eliminating the error transformations.

Construction of Expanded grammar G’ from G 

Input: a Context-Free grammar G = <VN, VT, P, S>

Output: <VN\  VT\ P\ S’>, where P' is a set of weighted grammar rules 

Methods:

1. VN‘ = VN u  [S’] u  {Ea I a e VT}, VT' a  VT.

2. if A —> a0biaib2....bmain, m £ 0 is a grammar rale in P such that 2l{ e VN” 

and bj e T ; then add A —> a0Ebla1Eb2....Ebmain, 0 to P', where each Ebi is 

a new nonterminal, E^ e  VN\ and 0 is

the weight associated with this grammar rale.
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3. Add the following grammar mles to P\

Grammar Rule w eighted I i»vH «ht«n w eight

(1)S’-> S 0

(2) S' ~> Sa 5 for all a € VT

(3)E*->a 0 for all a € VT

(4 )E .-> b o for all a € VT, b e VT* and a * b

(5)Ei ->  X y for all a e VT

(6) Ea ~> b E,, 5 for all a € VT, b e VT'

The grammar rules in (2), (4), (5), (6) are called error grammar rules. 

Each error grammar rule corresponds to one type of error transformation

on a particular symbol in VT. Thus, it is possible to measure the distance 

between a sentence and a langauge by counting the number of error 

gramma > (or accumulating the weights of grammar rules) used in the 

derivation.
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For example, the expanded grammar of the valley pattern is shown below :

Gy' = < VT\  VN\  P* S*>, in which

VT = { W h

VT'= { <Valley>’, <Valley>, <uptrend>, <downtiend>, E/t E^},

S’ = <Valley>’

P' :

tar rule Levenshtein distance (ie, g=¥=S=l)

<Valley> —> <downtrendxuptrend> 0

<Valley> --> <downtrendxValleyxuptrend> 0

<Valley>' ->  <VaUey> 0

<Valley>’ --> <Valley>/ 1

<VaUey>' ->  <Valley>\ 1

<Valley>’ --> <VaUey>- 1

<uptrend> --> E, 0

<downtrmd> —> Es 0

E; ->  / 0

Ef ->  - 1

Er -> \ 1

ft



www.manaraa.com

91

E,~>/E , 1

Ey —> \Ey 1

Ey ->  -Ey 1

E , - > \  1

E , - > \  0

E \" > " 1

E ,~ > / 1

E ,~>\E , 1

E \->  1

E ,~>-E , 1

E , - > X  1

A modified Earlier Parser [Tanaka and Fu 1978] for the expanded 

grammar G' with a provision to accumulate the weights associated with the 

grammar rales used in a derivation is presented as follows :

Minimum-distance error-correcting Earky-Par&si

Input: An expanded grammar G' = (VN,,VT\P',S') and an input string y = 

b|b2b3 ... m in VT-.

Output : I0,I,,I2,...Im, the parse list for y, and d(x,y), where x is the 

minimum-distance correction of y.
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Method:

1. Set j = 0. Then add [E --> .S',0,0] to I j .

2. If [A ~> a.Bf}, i, £] is in I j ,  and B --> y, T| is a production rale in P\ then 

add item [B ~> .y, j, 0] to Ij.

3. If [A ~> a., i, 4] is in Ij, and [B --> p.Ay, k, £] is in Ij, and if no item of 

the form [B --> f3A.y, k, (j>] can be found in Ij, then add an item [ B--> fJA.y, 

k, i]+£+£] to Ij, where £ is the weight associated with grammar rule A --> 

a . If [B~>pA.y, k, <j>] is already in Ij, then replace $ by ti+£+£ if 0 >

n+S+C
4. If j * m go to step 6 ; otherwise, j = j+1.

5. For each item in Ij., of the form [A --> a.bjp, i, £ ], add item [A ->  

abj.(3, i, 41 to Ij and go to step 2.

6 . If item [E ~> S'., 0, £] is in Im, then d(x,y) = where x is the minimum 

distance correction of y. Exit.

where a,|3,ye V*. A, B e VN'

The minimum distance correction distance of y, which is x, can be derived 

from the parse by eliminating all the error grammar rules. A parse o f \ \ \ \  

/ \  - / with the expanded valley grammar is shown in Fig. 3.15.
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3.3.6.3. Classifying Noisy Patterns

By creating an expanded grammar for each pattern grammar and 

constructing an error-correcting parser for each, it is possible to construct 

classifiers that can discriminate noisy patterns. As shown in Fig. 3.16., a 

pattern, say y, is first parsed with respect to each error-correcting

parsers G' j, G'2,...G 'M. The minimum error-correcting distance,

d(L(G|),y), between y and each pattern class L(Gj) is obtained and 

compared according to the following criterion :

y is classified to Gk iff d(L(Gk),y) = min { d(L(Gj),y) I i = l...n}, k e 

{l..n}

That is to say, y is classified to the pattern grammar that generates a 

sentence which is the closest to y among others.

3.4. Language Acquisition based on Grammatical Inference

So far we have been assuming that the pattern grammars are provided 

by the tracers. Depending on the pattern complexity, the task of specifying 

a grammar to describe a pattern can be very tedious and erroneous. Instead 

of acquiring these grammar rules manually, one can resort to
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automatic grammar rules inference techniques. The principle of these 

techniques is to derive the grammar of a lauguage by directly inferring 

from a set of sample sentences ( patterns) of the language.

Grammatical inference is concerned with the procedure to infer the

grammar rules G based on a finite set of sentences St from L(G), the

langauge generated by G, and possibly also on a finite set of sentences from 

the complement of L(G). The schematic diagram of a grammatical 

inference procedure is shown in Fig. 3.17.

3.4.1. Grammatical Inference Procedure

The input to the inference procedure is a sample of a langauge L,

denoted by S,(L). S,(L) is defined to be the set {+x,,....+xn} u

{-x,..... -xm}, where S+ = {+x,,....+xn} is defined to be the positive sample

of St(L), and S' = {-x,, -xm} the negative sample of S,(L). S+ is said to

be structural complete if every grammar rule in G is used to generate at 

least one sentence in S+. The property of structural completeness is 

important because there is no one-to-one relationship between a grammar 

G and the langauge L(G) that generated by G. The assumption of having a

ft
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structural complete S+ will significantly reduce the size of possible 

grammars for S+.

Furthermore, a class of grammar Q is admissible if : 1) Q is

denumerable, i.e. Q » {G,, G2, a n d  2) for any x e VT* , it is decidable

whether or not x e L(G), for any G in Q. Admissibility is a criterion that 

determines the usefulness of the inferred grammars and needed to be 

satisfied. In general, S+ is used to generate Q while S' is used to test the 

validity of each G in Q in light of the given assumptions on grammar class.

The complexity of grammatical inference is dependent on the class of 

grammar to be inferred. Unfortunately, most of the inference procedures 

for the class of Context-Free langauge or above are heuristic in nature. 

Finite-State language is the most easy to deal with because most questions 

pertaining to Finite-State languages are decidable. However, some of these 

questions are proved to be undecidable in other langauge classes. For the 

rest of the chapter, we will primarily focus on Finite-State and 

Context-Free Grammar only.



www.manaraa.com

99

3.4.I.I. Inference Procedure for Finite-State Pattern Grammar

The following procedure discusses the acquisition of Finite-State 

pattern grammar rules. The following assumptions are made :

1) The grammar being inferred is Finite-State

2) The sample of the language St=(S+,S) is a finite sample

3) The set S* is structural complete

4) The inferred grammar G is such that S+ is a subset of G and S' is a subset 

of tire complement of G.

Using these assumptions, an admissible class of Finite-State grammars 

will be derived using S+ and the following inference procedure. Different 

techniques will be used to select the inferred grammar from this

admissible class as the inferred grammar. When S' * <J>, the null set, the

information in S' can be used in the selection process.

The inference procedure discussed below will generate a Canonical

Definite Grammar Gc = ^ ^ . V ^ . P c . S ^  that can exactly describe a

given ST. The inference procedure is stated as follow :

1) Examine each x e S+ and identify all of the distinct terminal symbols 

used in the generation of the strings of S+.
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2) For each xt =  ailai2....ain, xt € S+, define the distinct set of rewriting 

rules

S ~> ajiZu 

Z ji --> a^

Each Zy represents a new nonterminal symbol.

3) The set VCN consists of S and all the distinct nonterminal symbols 

produced by step 2. The set of P consists of all the distinct rewriting rules 

defined by step 2.

The grammar G = <VCN,VCT,PC,SC> defined by the above procedure 

is a Finite-State grammar which has the property

L(G) = S+ and S' is the subset of the complement of L(G)

For example, given S+ = {W/, V) and S' = 0 , the Canonical Definite 

Grammar Gc corresponding to S+ is as follow :

VCT = { \/} , v CN = { Sc ,Z1,Z2,Z3,Z4,Z5}

ft
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Pc • Sc —>NZj Sc --> NZj

Zj —> NZj Z2 /Zj Zj /Z4 Z4 ~ > /

Zj -->  /

The Canonical Definite Grammar so constructed may result in a large 

nonterminal set. Some of the nonterminals in VCN are redundant. For

instance Z4 and Zj in the above example can be combined and replaced by 

another symbol. By combining equivalent symbols, we can derive a more 

compact grammar for S+.

It is possible to derive grammars from Canonical Definite Grammar

by partitioning the nonterminal set into different equivalent classes. 

The grammars so constructed are called Derived Grammars. A Derived 

Grammar GD= <VDN,VDT, P ^ S ^  is defined as follows :

V = {Bj, B2, B3, ....Bn), Bj B2 kj... o  Bn — and for any izj

B ,nB j=  t ,

V DT =  V CT*

PD is defined as :
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1) A production of the form Bi --> aBjis contained in PD if and only if

die re exists Vcn such that Z* ~> a Z^ Z ^ e  B| and 2^ e Bj.

2) A production of the form B* - >  a is contained in PD if and only if there

exists Za € V CN such that Za --> a, Za e Bj.

To illustrate , let GD be the Derived grammar of the above Canonical

Definite Grammar with VDN = {B,, B2, B3, B4} where Bj = { Sc ),

B2={Z1), B3 = {Z2) ,B4 = {Zj, Z4,Z 5), and the set PD is defined as

B ,-> \B 2 B ,-> \B 4 B2 -> \B 3 B3 -> /B 4 B4 -> / .

There are more than one way to partition the nonterminals in VCN, 

implying that there are more than one grammars that can be derived from 

a Canonical Definite Grammar. Since the number of derived grammars is 

finite and it is decidable to determine whether two Finite-State Grammars 

are equivalent, it is possible to enumerate all derived grammars and select 

the most compact one.



www.manaraa.com

103

3.4 .I.2 . Inference Procedure for Context-Free Pattern 

Grammar

Context-Free grammar is more difficult to deal with because some of 

the questions that are decidable in Finite-State grammar are undecidable in 

Context-Free Grammar. For instance it is in general undecidable to 

determine whether two Context-Free grammars are equivalent or not. 

Most of the inference procedures for Context-Free gramamr are heuristic 

in nature. The following procedure as proposed by Solomonoff [1964] is 

one that infers the grammar of a sample of sentences using a teacher as the 

oracle.

This semi-automatic procedure will discover recursive grammar 

rules for a subset of Context-Free grammar. The procedure described by 

Solomonoff consists of two steps :

1) Delete substrings of a valid string and ask the teacher if the remaining 

string is acceptable. By acceptable, we mean the string is a proper sentence 

of the inferred langauge.

2) If the remaining string is acceptable, we reinsert the deleted substring 

with several repetitions and ask if the resulting string is acceptable. If the 

resulting string is acceptable, a recursive construction is formed.
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Let's consider the following example: Let W/ be a sample sentence, the 

teacher has to evaluate the validity of the following strings :

{V/ // /  \  V W W}

Suppose the first and the last characters are deleted from W/, the 

remaining string (i.e. V) is evaluated to be valid. Then the teacher is

queried as to the validity of strings W/, W//» WW///,..... W..V..//. If they

are all acceptable for sufficiently large number of repetitions, the 

grammar rules {A ~> \A/ A --> V} are inferred. Note that the Valley 

grammar is rediscovered by this procedure. However this procedure, like 

all heuristic inference procedures, can only infer Context-Free grammar 

of specific structure. Nevertheless, the inference procedure as described 

above can aid a trader to specify a pattern grammar if the grammatical 

structure is known beforehand.

3.4.2. Language Refinement using Grammatical Inference

The inferred grammar using the foregoing inference procedures 

probably will not the be exact grammar that identify the language if there 

exists one. It is due to the fact that the sample (S+ S’) may be bias and 

violate the assumption of structural completness. Although there is no way 

to guarantee that a sample is structural complete, we can approach the

b
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exact grammar by periodically refine the grammar by using new pattern 

samples.

To support this, we need a mechanism to evaluate the performance of 

the pattern recognizer. Based on the architecture presented in the 

foregoing chapter, patterns identified by the parsers are stored in a 

decision log. Entries in this log is audited periodically by traders as 

follows:

1) Each pattern is shown to a trader and the trader determines the class of 

the given pattern.

2) Patterns that are concluded to be the same class by the trader and by the 

parser are stored in S+ of the corresponding pattern grammar.

3) Conflicting patterns are stored in S* of the pattern grammar.

4) If the number of conflicting patterns in a pattern grammar detected in 

step 3) has dropped below a threshold level, the inference procedure is 

invoked to derive a new grammar based on the new pattern sample.

The schematic diagram of a pattern recognizer with langauge 

refinement is shown in Fig. 3.18. Pattern Recognizers so constructed can 

be integrated with a trading expert system to provide real time data 

pertaining to price movement. The built-in mechanism of language 

refinement will automatically adjust the pattern knowledge which are
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Fig. 3.18. Pattern Recognizer with Language Refinement
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represented in the form of grammar rules. These refined rules are then 

used to build parsers for the pattern recognition engine.

Obviously, not all trading decisions involve merely the ability to 

recognize patterns. The assessment of the supply and demand of securities, 

generally referred to as fundamental analysis, is also essential in 

formulating trading strategies. By delegating the task of technical analysis 

(i.e. pattern recognition) to a computer, a trader can concentrate on 

assessing these factors. This allows the tractor to respond more quickly to 

incoming market information than otherwise.
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CHAPTER 4

TRADING RULES ACQUISITION AND REFINEMENT

4.1. Introduction

The world economy is experiencing an explosion in financial 

innovations. The result is a proliferation of financial instruments. The 

impact is indeed significant. New alternatives in funding, hedging, 

arbitraging, underwriting and investing are made possible by these 

innovative products. However, the complexity involved in formulating a 

trading strategy has also increased monotonically with these instruments. 

The trading process is further complicated by the fact that the market is 

getting more and more volatile and unpredictable. Selling and buying 

decisions have to be made on the spot under extremely tight time 

constraints.

To support decision making, complex models of the markets have 

been developed in an effort to provide analytical guidance to traders. 

However, in practice, especially in situations of high price volatility and 

under tight time constraints, these models offer little help. Analytical 

models on their own are not sufficient. Human judgments are resorted to in
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these situations. In fact, die decision-making process of a trader is driven by 

his experience, perception, and risk perference, in most cases. This 

explains, at least partially, why traders respond differently under identical 

market conditions. Thus, it is plausible to believe that in every trader's 

mind there is a unique decision model associated with the markets.

Apparently, trading decisions executed by these traders are not 

random, but are guided by their models which evolve through years of 

trading practice. Cognitively, this mental model of tire market is difficult to 

elicit. The same kind of difficulties are experienced by knowledge engineers 

during the knowledge acquisition process in developing expert sytems. As 

pointed out in [ Ericsson and Simon 1984], only the information residing in 

short term memory can be easily articulated. Numerous techniques have 

been developed to assist knowledge engineers in carrying out the task in a 

more effective manner. These techniques go in two directions. Some of 

them are manual techniques such as interviewing [Newell and Simon 1972] 

and protocol analysis [Waterman and Newell 1971]. Others are concerned 

with the development of computer-based knowledge acquisition systems.

The approach described in this chapter falls into the second category. 

Two inductive procedures are presented to acquire trading knowledge 

based on a set of sample decisions. These sample decisions can be readily



www.manaraa.com

110

obtained from previous trading transactions. Here, trading knowledge takes 

the form of rules called trading rales. A typical trading rale is shown 

below:

if the Yen/Dollar exchange rate has broken the up support 

and the trade deficit between U.S. and Japan shows no sign of decline 

and the budget deficit of U.S. remains high 

then

take a long position in Yen Futures

A trading rule describes how a particular market condition is 

interpreted or reacted to by a trader. The market model of a trader is 

composed of a set of these trading rales. In the above rule, a trader decides 

to take a long position in Yen Future only if 1) the exchange rate movement 

has broken the up support, 2) the trade deficit shows no sign of declining, 

and 3) the budget deficit remains high. Thus, if the actual market 

situation satisfies these three conditions, then buying Yen Futures is 

recommended. Moreover, it is quite possible that some of these conditions 

are dependent on others. For example, the trade deficit between Japan and 

the U.S. might in turn depend on how far away from the next election year 

and how open is the Japanese market in the near year, as shown by the 

following trading rale.



www.manaraa.com

I l l

if the time from next election year is more than a year 

and the Japanese market is not open in the next year 

then

trade deficit remains high

Each trader has his own set of trading rales which govern his decision 

making process. Obviously, a successful trader is one who makes the right 

decision at the right time. Good decisions are ones that have positive 

impacts on the company in monetary terms. Hence, trading rules are 

valuable assets of the trader and his company as well. In this chapter we will 

present two inductive procedures for acquiring these rales and discuss how 

these rules can be used in constructing intelligent trading systems. 

Indeed, a number of banks and brokerage houses have launched projects to 

develop expert systems to assist their trading activities [Reid 1986]. In order 

to have an expert system function in conformance with its initial 

specification, the right kind of knowledge (i.e. trading rules) has to be 

elicited.

The induction approach we use here is based on the conceptual 

frameork set forth by Winston [1975] Michalski [1980] [1983], Buchanan 

[Buchanan et. al 1980], and Mitchell [1977,1982]. A number of 

experimental systems which are based on this framework have been built
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(AQ11 in soybean disaease diagnosis [Michalski et. al 1980a] and 

Meta-DENDRAL in chemical structure analysis [Buchanan et. al 1980]). 

Although the forms of knowledge representation used in these systems vary, 

the learning techniques used are collectively referred to as "learning from 

examples" (or "teaming by induction") [Dietterich et al. 1983]. Acquiring 

knowledge by using these techniques has proved to be a feasible 

alternative to circumvent the bottleneck of knowledge acquistion in 

building expert systems. In fact, it was claimed that A Q ll's result in 

soybean disease diagonsis has outperformed experts in some cases 

[Michalski et al.l980a, 1980b].

The appealing results obtained from some of these projects have 

revealed the potential application of induction as a general knowledge 

acquisition paradigm. We proceed by first presenting in Section 4.2. a 

rule-based language that is used to state trading rules. Three spaces are 

then derived from the language, allowing one to envision the induction 

operators/procedures from a state space perspective. Section 4.3. sketches 

out the basic idea of the two procedures and explains the mechanism by 

using the notion of space partitioning. Section 4.4. introduces a number of 

induction operators which are used to transform trading rules. The two

ft
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procedures are presented in Section 4.5. and illustrated with examples. 

Section 4.6. concludes with a discussion of knowledge refinement.

4.2. A Language for Trading Rules

In this section, trading rules are stated using a rule langauge defined 

below. One form of knowledge representation scheme commonly used in 

building expert systems is production rules. The rule language described 

here can be considered as a specific form of production rules. There are 

three syntactic constructs in this language : Feature, Template, and Rule.

Features — A feature represents an independent attribute of a market. These 

features, F,,F2, . .. Fn where n is finite, together identify the dimensions 

of the market.

e.g., interest-Rate, Economy-Status

Features Domains -- For each feature, there is a finite set of values 

associated with it. They are called feature domains and are denoted by

Dom(Fj), Dom(F2), .. Dom(Fn). Each domain specifies the scope of a 

feature, and collectively, they specify the scope of the market.
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Furthermore, elements of a domain set can either be ordered or 

unordered.

e.g., Dom(Economy-Status) = {Good, Poor, Fair} is defined to be 

unordered and Dom(Interest-Rate) = (0.0,0.1,0.2,...200.0} is ordered 

Ordering of domain values is important because some learning operators 

can only be applied to ordered feature domains. Learning operators will be 

explained in detail in Section 4.4.

Templates - A tuple of the form (Ft Vj) where Dom(Fj) a  Vj, 1 <x i £ n. A

template identifies the specific value(s) associated with a feature, 

e.g., (Interest-Rate 7.8)

Rules - A rule consists of two parts : condition and conclusion separated 

by It takes the form

(F, V,)(F2 V 2U (F nA Vm.j) => (Fm Vm), 

where DomCF;) aV j, i=l,2,..m.

The condition part consists of a list of templates. The ordering of 

templates in a condition is not important. In logical terms, one can think of 

the template list as a conjunctive statement without variables. As will be
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discussed later, a condition characterizes a subspace which cannot be 

altered by the order of the templates.

e.g., (Interest-Rate 7.8XUnemployment-Rate £ 5.6) => (Economy-Status 

good)

The semantics of a rule as illustrated by die above example is that the 

condition part specifies the current situation (or interpretation) of the 

market (i.e. Interest-Rate is 7.8% and Unemployment-Rate is less than 

5.6%). Based on this condition, the conclusion (i.e. Economy-Status is 

good) is drawn. The less than sign is a shorthand for a subset of 

ordered domain values. Whether (Interest-Rate 7.8) proceeds 

(Unemployment-Rate £ 5.6) or the other way around is not important and 

does not alter the meaning of the rule.

Based on the above language, three spaces are defined as follows :

1) Feature Space F

F = Dom(Fj) x Dom(F2) x ...Dom(Fn) •

F is the Cartesian product of individual feature domains. It defines the scope

of the market and thus covers all possible market situations. An element x e 

F is called a state in F.
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2) Template Space T

T * {Fj x DonrKFj)} u  {F2 x DomCF^}... u  {Fn x Dom(Fn)}

T is die set of templates given F. The power set of T minus {<j>} is denoted 

by P(T). P(T) is the set that contains all subsets of T, excluding the empty 

set From a state space perspective, an element of P(T) divides F into two 

disjointed partitions. To illustrate this, let us consider an element of P(T), 

say t, where t = {(F, Vj) (F2 V2)}. The partitions induced by t on F arc

t’ * {Dom(Fj) -V ,) x {Dom(F2> - V2} x DomOF^... x Dom(Fn)

t" = V, x V2 x Dom(F3) x Dom(F4)... x Dom(F„)

Note that t' u  t" = F and t' n  t" = «j>. F are divided by t into 2 disjointed

partitions : elements in F with values of F, and F2 that cover V, and V2, 

respectively, are contained in t", with t' containing the remaining elements.

3) Rule Space R

R = { z I z : x => y where x e P(T) and y e T }

In the context of security trading, R is interpreted as the set of all possible 

trading rules that a trader uses to relate market conditions to conclusions.
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43 . A Sketch of the Induction Procedures

Let us sketch out the mechanism of the induction procedures by 

using the language defined above. By induction, we mean to infer 

general principles from specific instances. In this chapter, this is 

translated to inferring trading rules from previous trading decisions. 

Given the above language, there is conceptually no difference between a 

rule and an example. Both are partitions of F. In the following discussion, 

the terms "rules," "example," and "partitions" can be interchanged. To 

illustrate this, let us consider an example (Fig. 4.1.) of buying Yen Futures 

as shown below:

(+ve) (Trade-Deficit large XJapan-Prime-Rate high) => (Buy Yen-Future) 

For simplicity, only two features are used in this example. For the rest of 

the chapter, we use (+ve) and (-ve) to denote positive and negative 

examples, respectively. These two features (Trade-Deficit and 

Japan-Prime-Rate) and their associated values induce a partition in F. This 

was explained in the previous section. In a similar fashion, a negative 

example of buying Yen Futures such as 

(-ve) vJapan-Prime-Rate low) => (Buy Yen-Future) 

is also a partition in F (Fig. 4.2.)
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Fig. 4.1. Partition of (Trade-Deficit large)(Japan-Prime-Rate high) =>

(Buy Yen-Future)
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Fig. 4.2. Partition of (Japan-Prime-Rate low) => (Buy Yen-Future)
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Given a collection of examples of a decision, say buying Yen Futures, 

the induction procedures attempt to infer the relationships between the 

market situations and the decision of buying Yen Futures from these 

examples. Each example describes a unique market condition that relates to 

a decision of buying Yen Futures. Negative examples are also used. A 

negative example spells out the wrong market condition related to a 

decision. Similarly, negative examples appear as partitions in F. The 

induction procedures discussed in this section are search methods that 

search for partitions in F (or equivalently rules in R) that are consistent 

with the given examples.

The idea can be explained pictorally in Fig. 4.3. Given a collection of 

initial partitions (both positive and negative examples of a decision), an 

induction procedure expands, contracts, and unifies these partitions so as 

to generate a new set of partitions (rules) that are more general 

(larger) than the initial examples. The ideal case here is to partition F in such 

a way that positive and negative examples reside in different partitions. 

The operators required to alter the partitions and how these operators are 

used in die induction procedures are discussed in the next two sections.
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1
=> =>

=> - partitioning of the feature space F 

0 - positive examples 

X - negative examples

Fig. 4.3. Rules Induction
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4.4. Induction Operators

Induction operators are the means by which knowledge (ie. trading 

rules) can be transformed. As indicated in surveys by Bunley et al. [1985] 

and Dietterich et al. [1983], there are basically two types of operators in 

most rule acquisition systems : generalization operators and specialization 

operators. Generalization and specialization operators generalize and 

specialize rules, respectively. In terms of partitioning, the former expand 

and unify partitions while the latter contract partitions. Some of these 

operators are context sensitive in the sense that they can only be applied to 

ordered feature domains. The induction operators associated with the rule 

language are listed below:

Generalization Operators :

The sign "G>" means "generalizes to"

1) Dropping-Conditions

Dropping condition operator generalizes a rule by dropping a template 

from the condition of a rule.

(F, V,XF2 V2) => (F3 V3)

G>

(F, V ,)=>(F3 V3) or (F2 V2) => (F3 V3)
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eg. (Trade-Deficit large)(Japan-Interest-Rate high) => (Buy Yen-Future)

G>

(Trade-Deficit Large) => (Buy Yen-Future) or 

(Japan-Interest-Rate high) => (Buy Yen-Future)

2) Min-Max-Reference

Min-Max-Reference operator is applicable to rules that have the same 

feature on their conditions but are associated with different singleton 

values. These singleton values are then expanded to sets of values by taking

the minimum and maximum of Vj and V2, respectively. Note that in order

to apply this operator, the feature domain has to be ordered.

(F, V,) => (F3 V3)

G> (F, <; max(V,,V2)) => (F3 V3) or 

(F, £ min(Vj,V2)) => (F3 V3)

(Fj V2) => (F3 V3) 

where Dom(Fj) is ordered

For exarr ole, (Unemployment-Rate 9.8) => (Economy-Status poor) and 

(Unempolyment-Rate 11.0) => (Economy-Status poor)

G>
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(Unemployment-Rate £ 11.0) => (Economy-Status poor) or 

(Unemployment-Rate £ 9.8) => (Economy-Status poor)

where Dom(Unemployment-Rate) * {0.0,0.1, 50.0}

3) Extending-Reference

Similar to the Min-Max-Reference, this operator applies to rules that 

have the same feature in their conditions. However, the 

Extending-Reference operator is applicable not only to singleton values, but 

to set of values as well. It unifies the different set of values associated with 

the feature.

(Ft V1)^>(F3V3)

G> (F, V, u V ^ ^ V j )

(F, => (F3 V3)

For example,

(Budget-Deficit large => (Treasury-Bill-Interest-Rate-Auction up) and 

(Budget-Deficit moderate) => (Treasury-Bill-Interest-Rate-Auction up)

G>

(Budget-i^eficit {large,moderate })=>(Treasury-Bill_interest-Rate-Auction 

up)
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4) Next-High-Point

This operator extends the set of values associated with a feature by 

including the next higher element into die set

(Fj £ V,) *> (F3 V3) G> (F, <; Vj) =» (F3 V3)

where Dom(F,) is ordered and V2 is the next higher value of V,

For example, (Unemployment-Rate £ 11.0) => (Economy-Status poor)

G>

(Unemployment-Rate £ 11.1) => (Economy-Status poor) 

where Dom(Unemploymenet-Rate) = {0.0,0.1,..11.0,11.1,...50.0}

5) Next-Low-Point

In a similar fashion, Next-Low-Point generalizes a rule by including 

die next lower value in the set of values associated with a feature.

( F ,2: V2)=>(F3 V3) G> (Fj 2: V,) => (F3 V3)

where Dom(Fj) is ordered and V2 is the next higher value of V1

For example, (Unemployment-rate £ 11.1) => (Economy-Status poor)

G>

(Unemploy ment-Rate > 11.0) => (Economy-Status poor) 

where Dom(Unemployment-Rate) = (0.0,0.1,..11.0,11.1,..50.0}
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Specialization operators :

the sign "S>" means "specializes to"

1) Adding-Conditions

This operator is the reverse of die Dropping-Condition generalization 

operator. It combines two rules by combining die conditions of the two rules 

into one.

(Fj V,) ®> (F3 Vj)

S> (F1V1KF2 V2)^>(F3V3)

(F2 V2) => (F3 V3)

For example, (Unemployment-Rate 15.0) => (Economy-Status poor) and 

(Inflation-Rate 17.0) => (Economy-Status poor)

S>

(Unemployment-Rate 15.0)( Inflation-Rate 17.0) => (Economy-Status poor) 

where Dom(Unemployment-Rate) = {0.0,0.1,..11.0,11.1,..50.0}, 

Dom(lnflation-Rate) * (0.0,0.2....15.4,15.6,....300.8}

2) Clos.ng-Interval

When this operator is applied, the range of values associated with a 

feature is bounded from either above or below by the next higher or lower
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value, respectively. Note that this operator is applicable to ordered feature 

domains only.

(F, £ V,) *> (F3 V3) S> (F, {V,.V2})*>(F3V3)

(F, £ Vj) => (F3 V3) S> (F, (V1,V2})=>(F3 V3)

where Dom(Fj) is ordered and V2 is the next higher value of V,

For example,

(Inflation-Rate £ 15.4) => (Economy-Status poor)

S>

(Inflation-Rate {15.4,15.6}) => (Economy-Status poor) 

where Dom(Inflation-Rate) = (0.0,0.2,... 15.4,15.6,....300.8}

3) Next-High-Point

The Next-High-Point specialization operator reduces the set of ordered 

values of a feature by discarding the smallest value in the set.

(Fj £ V,)=> (F3 V3) S> (F, ^ Vj) => (F3 V3)

where Dom(F,) is ordered and V2 is the next higher value of V,.

For example,

(Persian-Gulf-Tension £ tight) => (Gold-Future-Trend up)

S>
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(Persian-Gulf-Tension extremely-tight) => (Gold-Future -Trend up) 

where Dom(Persian-Gulf-Tension) * (stable,tight, extremely-tight) and is 

ordered.

4) Next-Low-Point

Next-Low-Point reduces the set of ordered values of a feature by 

discarding the largest value from the set.

(Fj £ Vj) =s> (F3 V3) S> (F, ^ Vj) => (F3 V3)

where Dom(F,) is ordered and V2 is the next higher value of V,.

For example,

(Inflation-Rate £ S.6) => (Economy-Status fair)

Sb>

(Inflation-Rate £ 5.4) => (Economy-Status fair) 

where Dom(Inflation-Rate) « (0.0,0.2,... 15.4,15.6,....300.8).

One can think about these operators as functions that map mle(s) to 

rule. By application of these two kinds of induction operators, the number 

of states in F covered by a rule can be altered. An induction procedure is 

an algorithm that systematically applies these operators to partition F to 

generate rules that satisfy certain predefined induction criteria. The two
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induction procedures, one based on specialization operators and the 

other cm generalization operators, will be presented in the next section.

4.5. Two Induction Procedures based on Space Partitioning

Both of these procedures are centered on the concept of "learning 

from examples" [Dietterich et al. 1982]. Their input-output requirements 

are depicted in Fig 4.4. To learn a concept or a trading decision, 

previous scenarios or cases are used as examples from which general 

trading rules are inferred.

Another parameter of these two procedures consists of the induction 

criteria. They characterize the goal of the search procedure by deciding 

which search space should be pruned. In a survey by Angluin et al. [1983] on 

inductive inference, the majority of practical and theoretical studies on 

inductive inference methods are associated with two conflicting criteria - 

Simplicity and Goodness of Fit.

S im plicity  - In characterizing a concept, a simple yet powerful 

description is most desired. In other words, we would prefer a rule that 

has the smallest number of features in its condition. Suppose we have the 

following two rules relating to Economy-Status :
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1) (Inflation-Rate £ 4.6XUnemployment-Rate £ 10.0) =>

(Economy-Status good)

2) (Trade-Surplus high) *> (Economy-Status good)

If both rules cover all positive examples and reject all negative 

examples of a good economy, then rule 2 is preferred over rule 1. The 

reason is that Trade-Surplus is the dominant feature in describing a 

good economy, and having only oik feature does not impede the validity of 

rule 2 in describing a good economy.

Goodness of fit - In the search for the simplest description of a 

concept, the result rule might consist of very few features. Yet, it might 

be too general to apply in other situations. For instance, the statement "all 

good students are human beings" is too general in describing good 

students. In order to prevent a concept from being over generalized, the 

generalization process should be driven by the examples provided. The 

idea is similar to regression analysis in statistics in which a linear 

regression line that minimizes the least square distances from the provided 

data poir.ts is estimated.
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In our procedures, we would prefer a rule that partition F in such a 

way that positive and negative examples are totally separated. A rule 

would probably become more complicated (involved more features) in 

order to cover more positive examples (or reject more negative 

examples). Moreover, it might not be possible to have a single rule in cases 

when examples are not clustered in a local region in F. Simplicity and 

Goodness of fit are two conflicting criteria that require tradeoffs to be made 

and input to the induction procedures. For instance, Fig. 4.S. is a list of 

combinations between the two criteria which have no absolute preference 

ordering. The tradeoff between these two criteria is specified by five 

parameters in the procedures :

w, - number of positive examples covered by a rule (local) 

w2 - number of negative examples rejected by a rule (local) 

w3 - number of features in a mle

w4 - number of positive examples covered by a set of rules (global)

ws - number of negative examples rejected by a set of rules (global)

A distinction is made here between the number of examples covered 

(or rejected) by a rule and that by a set of rules. The former is referred to 

as local while the latter global. The reason is that it might require more
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no. of ♦vt 
•xamplea 

covarad

no. of -vo 
•xampioo 
rajactad

no. of 
footuroo

A 12 26 5

0 12 16 4

C 0 10 4

0 14 26 6

Fig. 4.5. Four Combinations of Criteria with No Absolute Ordering
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than one rule in relating market conditions to a conclusion in order to be 

consistent with the examples. As mentioned before, examples that scatter in 

F might form clusters which cannot be described by a single rule. Instead,

drey are described by a set of rales. Therefore, separate parameters w4 and

w5 are required when rales are assessed collectively.

For instance in Fig. 4.6., there are 2 positive examples and two 

negative ernes. Suppose we specify that each rule has to cover 50% (w,) of

positive examples and reject 50% (w2) of negative examples. The two 

rales are satisfied individually. However, if tire two rales are considered 

jointly, they together cover 100% of positive examples and reject 0% of 

negative examples!

Notice that the actual local acceptance rate of positive examples is 

always greater than or equal to the actual global rate. But this is not true 

for negative examples. The actual local rejection rate always equals or 

underestimates the global one as illustrated in tire above example. In order

to have a feasible set of criteria, we would like to specify values of w1>w2.w4 

and ws that satisfy the following constraints :
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Rul* B

Rut* A
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X -  n*fl«tlv* cximpl*

Fig. 4.6. Example of Local and Global Criteria
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1) W j ^ W 4

2) w5 <i w2

The proof is as follows : Suppose n rules, RlfR2, .... R„, are used to describe 

a trading decision. Given a set of positive examples N+ and a set of negative

examples N. of this decision, let P+(Rj) and P.(R,), 1 € i € n( denote the

actual number of positive examples and negative examples covered by each 

of these rules, respectively. It follows that the positive examples covered by 

these rules is

P+(Rj) u  P+(R2> u  P+(R„) a  P+(Rj), 1 * i * n (4-1)

and the global acceptance rate of positive examples become

I P+(R,) u  P+(R2> u  P+(R„) I /  INJ 2:1 P+(R4) I /  INJ, 1 <; i <; n (4-2)

In (4-2), L.H.S of the inequality represents the actual global acceptance rate 

of positive examples, and R.H.S. of (4-2) denotes the acceptance rate of

individual rules, implying that w4 ^ w,. Similarly, the negative examples

rejected by these rules is

N. - P.(Rj) a  N. - P.(R,) u  P_(R2)  u  P (Rn). 1 <; i £ n (4-3)
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The global rejection rate of negative examples then becomes

l{N - P.(Ri)}l/IN.I £ IN .-P .(R ,)u P (R j)  u P.(Rn) I/ INJ (4-4)

where 1 £ i £ n

Since the L.H.S. of (4-4) is the actual rejection rate which is always greater 

than or equal to the local rejection rate (R.H.S. of 4-4), in order to be

feasible, we need ws £ w2.

Let us proceed to discuss the algorithm of tire two procedures. We start 

with the one that uses specialization operators only.

Induction Procedure (Specialization)

1. initialize final rule set R to {) and raw rule set R' to F;

2. initialize R' with feature domain constraints if any;

3. while R* * (} do

4. generate new rules by applying specialization operators to rules in R';

5. for each raw rule r generated in 4 do

6. if r covers at least w,% positive instances and the number of

.eatures <, w3 then begin

7. R' = R' u  {r};

8. R’ = R* - parent(s) of r
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9. End(if);

10. for each parent rule Pr in R' do

11. if no successor rule is in R' then begin

12. R * R u { P r);

13. R’ = R’-{Pr}

14. End(if);

13. End (while);

16. Remove all rules in R which reject less than w2% of negative examples;

17. Check rules in R against the global parameters w4 and w3;

18. Remove redundant rules in R';

The procedure is a general-to-specific breadth-first search procedure 

that generates rules by incrementally specializing F or the initial 

partitions of F. It operates on two rule sets R and R’. R contains final 

rules while R' contains candidate rules to be specialized. Initially (step 1), 

R is null - no final rule has been generated. If additional information or 

constraints are available, they can be incorporated into the procedure in 

the form of initial partitions of F. This takes place in step 2. This 

information can be obtained from a number of sources (experts and

t:
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observations) and is useful in reducing die time of search. For instance, 

if the Inflation-Rate is known to be less than 10% when the economy is 

good ((Inflation-Rate £ 10.0) *> (Economy-Status good)), then the search 

procedure can neglect those elements in F with Inflation-Rate larger than 

10%.

Depending on whether extra information is available or not, R' is 

initialized to F or the initial partitions of F accordingly. The search 

procedure starts in step 3 : for each rule in R', specialization operators 

are applied to generate more specialized rules. After all rules in R' are 

tried, a new set of rules which arc more specialized than their parents has 

been created. Duplicated or redundant rules are discarded from R’. Since 

this is a general-to-specific search procedure by incrementally specializing 

F to fit the examples, if there exist two rules in R' with one implying the 

other, then the more general one is discarded. Tire procedure then checks 

whether each new rule covers the prescribed percentage of positive

examples (wt) and the number of features (w3). If satisfied, the new rule is

put into R' and the parent of which is deleted from R'. The reason is that

since the child is more specific than its parent(s) and satisfies Wj and w3,

there is no need to keep the parent(s) in R'. These operations take place in
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steps 5 - 9 .  Note that rules in R' always satisfy w1 and w3 during the 

search.

There might be cases that some rules in R’ do not have children that 

satisfy both w, and w3. These rules are then discarded from R' and are put 

into R (steps 10-14). Steps 4 -14 are then repeated until R' is empty. When 

R’ becomes empty, it implies that no rule can be specialized anymore. If 

no rule is collected in R after R' becomes null, then no rule can satisfy the

given Wj and w3 values. The procedure has to be rerun with different 

w,,w2 and w3 values. In cases when R is not null, the procedure will retain 

those rules in R that also satisfy w2. Finally, the set of rules in R is checked

with w4 and w5 on a global basis. This is carried out by counting the

number of positive examples that are covered by rules in R. Negative 

examples are done in a similar fashion. If satisfied, R is output as the final 

rule set. Otherwise, the procedure has to be rerun with different 

parameter values. In the last step, redundant rules are eliminated. The 

search r schanism of the procedure can be illustrated by the following 

example.
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Example

In this hypothetical example, we want to leam the trading rules of 

buying Yen Futures. Four previous trading decisions are used as input 

examples to the procedure. Out of the four examples, two are positive and 

two are negative. To further simplify these examples, only two features 

are used in the four examples as defined below :

TD - Trade deficit between Japan and U.S. (in billions $)

ER - (1 + one year bond rate of Japan)/(1 + one year bond rate of U.S.), 

where

Dom(TD) = {0... 50,60,70,...200} (ordered)

Dom(IR) « {0.200,0.201...........5.000} (ordered)

(+ve/-ve) Rules

+ve (TD 70)(IR 1.098) => (Buy Yen-Future)

+ve (TD 63)(IR 1.095) => (Buy Yen-Future)

-ve (TD 20)(IR 1.080) => (Buy Yen-Future)

-ve (TD 10)(IR 1.001) => (Buy Yen-Future)

If e are provided with the initial beliefs that it is the right 

condition to buy Yen Future whenever TD £50 or IR £ 1.100, then our
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procedure can start from the partitions induced by the following two 

rules:

1. (TD 2:50) *> (Buy Yen-Future)

2. (IR ^  1.100) => (Buy Yen-Future)

In this example, w1,w2,w3,w4,and ws are set to 100,100, 3,100, 100 

respectively. The entire search procedure of this example is shown in 

Fig.4.7.. The final rule obtained in R is (TD {60,70})(IR £ 1.098) => (Buy 

Yen-Future).

Induction Procedure (Generalization)

The difference between this procedure and the previous one is that it 

uses a specific-to-general search technique as opposed to the 

general-to-specific approach in the previous procedure. It starts with an 

initial set of positive examples and incrementally generalizes the positive 

examples. The idea is to generalize some specific cases to obtain more 

general rules. The search mechanism is similar to Michalski' INDUCE 

method m [Michalski 1983] in the way that positive examples serve as the 

seeds of generalization.
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1. initialize final rule set R to {};

2. initialize raw rule set R’ with positive examples and constraints if any;

3. while R’* { ) d o

4. generate new rules by applying generalization operators;

3. for each new rule r generated in step 4 do

6. if r rejects at least w2% of negative examples and contains less 

than w3 features then

7. R‘ = R' u  {r)

8. end;(for)

9. for each parent rule Pr in R' do

10. if no child is in R' then

11. R = R u ( P r);

12. R' = R' - {Pr)

13. End;(for)

14. End;(while)

15. For .ach rule r in R do

16. if r covers less than w,% of positive examples then

17. R = R - {r);

i
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18. End;(for)

19. check if each rule in R satisfies the global parameters w4 and ws;

20. discard redundant rules in R.

Steps 1 and 2 initialize the two rule sets R and R’ with {} and 

positive examples, respectively. Generalization operators are then applied 

to rales in R' to obtain more generalized ones (Step 4). Only those new rales

with less than w3 number of features which also reject w2% of negative

examples are retained in R' (Step 5 - 8). Again, duplicated or redundant 

rales are discanted from R’. Rules that are covered by others are redundant 

and are discarded from R'.

The next step is to identify rales in R' that cannot be generalized 

anymore. They are those rules with all their children rejected in step 6. 

These rales are discarded from R' and put into the final rale set R. All 

other parent rales are also eliminated from R because the newly generated 

rules are more general and their parents need not be retained. The above 

operations are repeated until no more rules can be generalized (ie. R'= {}). 

The rules obtained in R after the procedure exists from the main search

loop are tested whether they cover w,% of positive examples or not (Step
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15-18). Rules that fail the test are discarded from R. If R is null, the search

is concluded to have failed with the given w2 and w3 values. The search has

to be restarted with another set of parameters. In step 19, the remaining

rules are then tested globally against the specified w4 and w5 values.

Finally, redundant rules are deleted from the final rule set. If satisfied, R is 

output as the final rule set Otherwise, the procedure has to be rerun again 

with a different set of parameter values.

Example

Fig. 4.8. illustrates the search mechanism of the generalization 

procedure as applied to the previous example. The same set of feature 

names is used. Four different examples are used as shown below:

Rules

+ve (TD 70)(IR 1.090) => (Buy Yen-Future)

+ve (TD 80) => (Buy Yen-Future)

-ve (TD 65) => (Buy Yen-Future)

-ve (IR ^1.087) => (Buy Yen-Future)

Here, w,, w2, w3, w4 and w5 are set to 100,100, 3, 100, 100 respectively.
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The final rules generated are

1. (TD £ 70XIR £ 1.088) =*> (Buy Yen-Future)

2. (TD 80) => (Buy Yen-Future)

4.6. Knowledge Refinement

We have presented two procedures, both based cm induction learning, 

in acquiring trading rules. The trading rules so acquired using these 

methods might become obsolete as the market envimoment changes. To 

keep our knowledge updated, we have to update the rules periodically. This 

can take place in two ways :

1) Redefine the feature space -- new features may be added and existing 

features deleted from F. The size of existing feature domains may need to 

be enlarged or reduced. The scope of the market defined by F has to be 

updated in response to changes in the market environment.

2) New set of trading rules -- a new set of trading rules has to be inferred 

periodically to keep track of the changes in the trader’s perception of the 

market.

The Knowledge base of most current expert systems is static in nature. 

There is little or no mechanism provided to update the knowledge. Except 

for domains that do not change rapidly, the knowledge acquired might no



www.manaraa.com

149

longer be valid at a later stage. This is particularly true in security trading 

where the knowledge is intensive and is changing rapidly. To build expert 

systems in this area necessitates an automated knowledge acquisition and 

updating mechanism to be built together with the inference engine. Using 

the induction procedures, a new set of trading rules can be generated by 

running the procedures with a new set of examples, assuming that the new 

examples fairly reflect the changes of the market.

To achieve this, we need an updating mechanism that can refine the rule 

base periodically. Again, the architecture in Chapter 2 is adopted here as 

follows:

1) Decisions generated by the inference engine, together with the 

corresponding inference chains, are stored in a decision log.

2) The decision log is audited periodically by human traders to check for 

conflicting decisions.

3) Conflicting decisions are recorded and stored as negative examples of the 

corresponding rules.
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y

4) If the number of conflicting conclusions has fallen below a given 

threshold level, the induction procedures discussed in Section 4.5. are 

invoked.
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CHAPTERS 

CONCLUDING REMARKS

5.1. Summary

We have extended the conventional architecture of expert systems to 

incorporate knowledge acquisition and refinement in this thesis. Two new 

components, decision log and knowledge refiner, are added. The former 

keeps track of the decision generated b. the expert system and the 

corresponding chain of reasoning. By periodically audit the entries of the 

decision log and compare them with that of human experts, one can infer 

the validity of the knowledge base. The validity of a knowledge base is 

measured by the number of conflicting decisions between the expert 

system and human experts. If this number fell below a threshold value, the 

knowledge refiner is invoked to refine the knowledge base in light of the 

conflicting decisions.

The architecture is not restricted to any specific kind of knowledge 

representation schema or inference procedures. To demonstrate its 

generality, two task specific reasoning systems are studied using this 

extended architecture. The two tasks are pattern recognition and

ft
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classification. Furthermore, to illustrate the applicability of this 

architecture to solve real-life problems, both tasks are applied in 

automating security trading. Fig. 5.1. summaries the knowledge scheme, 

the inference method, die decision log, and die knowledge refining method 

of these two tasks.

5.2. Future Research Directions

As mentioned earlier in this thesis, the assumption that underlies this 

architecture is the validity of the inference method. By assuming the 

inference method of an expert system is consistent with the reasoning 

process of human experts, we are able to focus primarily on the validity of 

the stored knowledge. Furthermore, by using the number of conflicting 

decisions as the performance criterion, one cannot distinct the situations 

between a deteriotating knowledge base that due to a changing domain or 

one that due to bias sample.

This research will continue in three directions as follows :

1) To understand the changing inference process of human experts and to 

develop methodology to detect and monitor these changes.
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2) To develop new measure of the validity of a knowledge base that can 

distinct between an outdated knowledge base and one that due to bias 

sample.

3) To test the applicability of the proposed architecture in different 

application domains and different reasoning tasks.
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