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ABSTRACT

Tam, Kar Yan. Ph.D., Purdue University, May 1988. Knowledge
Acquisition and Refinement in Expert Systems. Major Professor : Andrew B.
Whinston.

The issue of knowledge refinement in expert systems is addressed in
this thesis. In general, an expert system is composed of a knowledge base
which stores application specific reasoning knowledge, an inference engine
which processes the stored knowledge, and an interface through which
communication links between the users and the expert system are established.
In terms of knowledge refinement, this architecture is dependent on
knowledge engineers to refine its stored knowledge on a periodical basis. The
frequency with which the knowledge base is revised depends very much on
the underlying application domain. Furthermore, the control mechanism of
the inference engine may also need to be updated 1n order to match up with
the changing inference process of human experts. In the scope of this thesis,
we will primarily focus on the former.

In this thesis, we will generalize the principle of knowledge acquisition
to knowledge refinement of a continuous nature. While knowledge

acquisition takes place in the early stage of an expert system development,



knowledge refinement is applicable during the entire life-span of an expert
system. The thesis starts by presenting a conceptual framework of building
knowledge acquisition systems. Based on this framework, a generic
architecture of expert systems with a provision to refine its own knowledge
base is discussed.

The novelty of this research is to study knowledge acquisition and
refinement in expert system by presenting an architecture and to prove its
validity, at least partially, by streamlining it to some generic problem tasks
which are illustrated with a real-life application.

The thesis is organized as follows : Chapter 1 presents a conceptual
framework of building knowledge acquisition systems. The idea of
knowledge acquisition is extended to knowledge refinement in Chapter 2; a
generic architecture of expert system that are capable of self-refinement of
knowledge is presented. The architecture is then used to construct expert
systems to perform generic problem tasks of pattern recognition and
classifiaction in Chapter 3 and Chapter 4 respectively. Chapter 5 concludes

the thesis by discussing future research directions of knowledge refinement.



CHAPTER1
A CONCEPTUAL FRAMEWORK OF BUILDING
KNOWLEDGE ACQUISITION SYSTEMS

1.1. Introduction

The process of knowledge acquisition is generally regarded as the
bottleneck in developing expert systems [Buchanan 1982]. In a broader
context, knowledge acquisition refers to the collective process of
eliciting, structuring and coding of human expertise in a form that is
computationally feasible on a computer.

Traditionally the task is accomplished through an iterative process of
interviewing between a knowledge engineer and an expert. The
interrogating process, though commonly adopted by knowledge engineers,
has a number of pitfalls from a cognitive standpoint. The major obstacles
against this approach are the inabilities of knowledge engineers to ask
"to the point" questions and the inabilities of experts to articulate their
expertise in concrete terms [Bainbridge 1987] .

Eliciting knowledge by asking questions requires a knowledge

engineer to has at least a certain degree of acquaintance with the problem



domain. For instance in medical diagnosis, the concepts such as
"symptoms"” and "diseases” have to be fully understood beforehand.
Otherwise, the validity of the knowledge base will very likely be impaired.
In some domains, the background knowledge required is enormous,
making the interview technique infeasible and inaccurate if applied.

Furthermore, it is not uncommon that experts make their decisions
which are not available for conscious introspection. Cognitively, this
phenomenon occurs because human often cannot get access to their
mental processes that lead to their final decisions. Ericsson and Simon
[1984] suggested that only those information reside in short term memory
can be verbalized. Since expert knowledge embrace skills, experiences,
and problem solving techniques that have evolved through years of
practice, they are particularly difficult to articulate using the interview
technique.

Various other approaches have been proposed to circumvent the
bottleneck problem in knowledge acquisition. According to the role of
computer played in the process of knowledge acquisition and the
degree of leamning performed on the part of the acquirer (a knowledge
engineer or a computer based knowledge acquisition system), they can be

classified into two main streams of approaches.



The first approach follows the direction of interviewing by
improving the skills and introducing new techniques to aid a knowledge
engineer in the knowledge acquisition process. The setting of this
approach is still an iterative process between two parties - knowledge
engineer and expert.

Newell and Simon [1972] proposed a way to elicit human expertise by
having the experts to "think aloud"” in a problem solving process. This
method is called Protocol Analysis and is suggested to be a
methodology in developing expert systems [Waterman 1971]. The idea is
to study how experts solve problems by recording verbal transcripts of
sample problem solving processes. These transcripts are then analyzed
in detail. A transcript represents a solution path in solving a problem. It
reveals sequence of problem solving events conducted by an expert in a
problem solving episode.

A more elaborate variant of protocol analysis is taken in [Belkin
1986] in which interactions between users and librarians in document
retrieval situations are first observed and recorded in the form of audio
transcripts. Next, discourse analysis [Hendrix 1979] is applied to the
transcripts to identify and specify the functions of an intelligent interface

for a document retrieval system.



For protocol analysis, the knowledge granularity is at the utterance
level, making the analysis a very time consuming process. Furthermore,
analysts require considerable training in psychology in order to attain a
satisfactory competence level. Ecrisson and Simon in [1984] gave a
comprehensive account on the problems of eliciting knowledge using
verbal data.

Another approach is taken in [Lafrance 1986] to formalize the
interviewing process by proposing a knowledge acquisition grid. A
knowledge aquisition grid represents a taxonomy of question types and
forms of knowledge. It serves as a framework and a systematic way to
train knowledge engineers to relate the form of knowledge (eg. Scripts,
Rules-of Thumb) with the types of questions (eg. cataloging categories,
ascertaining attributes) to be asked during an interview.

One common feature shared by these techniques is that they are
basically manual techniques. The use of computer is limited to the
analysis of data (eg. utterances in a transcript) rather than on the
acquisition process itself. As a consequence, the inherent limits
associated with these techniques on the effectiveness, completeness and
cost of the process have led to research in automating the task by

building computer based knowledge acquisition systems. By delegating the



task to a computer, the duration of the process can be shortened to a
large extent by :
1) Direct encoding of expertise in a form recognizable by the inference
engine.
2) Allowing rapid construction of prototypes to be assessed by experts and
end users in the early stage of the development process.
3) Reducing the time spent in debugging the knowledge base by avoiding
the possibility of an inconsistent knowledge base. This is accomplished by
checking the consistency and completeness of the acquired expertise using
a deductive mechanism.

In this chapter, the issue of building knowledge acquisition systems
is addressed from the perspective of machine learning. We will present a
framework that identifies the essential attributes of a knowledge
acquisition system. The objective is twofolded. First, it explores the
various techniques used in knowledge acquisition. Second, a framework
is presented to provide a systematic view and guidelines for the design
of knowledge acquisition systems. Attention is placed on the mapping
between learning strategies and the other attributes of a knowledge
acquisition system. By doing this, we attempt to abstract out the crucial

decisions pertaining to the design of a knowledge acquisition system. In



Section 1.2., the various learning strategies are discussed. Section 1.3.
presents a framework that identifies the attributes of a knowledge
acquisition system and discusses how these attributes are related to the
various learning strategies. Section 1.4. concludes the chapter with a

discussion on the implications of the framework.

1.2. Learning Strategies
Leaming is defined in a number of ways. In [Simon 83], Simon

defined learning as

"Learning denotes changes in the system that are adaptive in the
sense that they enable the system to do the same task or tasks drawn from

the same population more efficiently and more effectively the next time.'

It is plausible to equate our connotation of "learning” with
"knowledge acquisition” in the context of building systems that facilitate
the acquisition of expertise. Indeed, numerous knowledge acquisition
systems actually learn the domain knowledge from the experts [Cohen and
Feigenbaum 1982]. They perform more than the transfer of expertise

between media but act as individual entities that, like human, enrich their



knowledge base through learning. One ambitious goal of Artificial
Intelligence is to build expert systems that are capable to learn on their
own. To this end, the theory of leamning, especially machine learning
[Simon 1983],[Carbonell, Michakski, and Mitchell 1983], provides
valuable conceptual foundation and insights to research in this area.

Given our interest in building knowledge acquisition systems, we are
more interested in the leaming process itself. Unlike the definitions of
learning which are numerous, there are basically four different
approaches towards the process of learning : rote leaming, leamning
by deduction, learning by analogy, and learning by induction. Notice that
the complexity of the process and the degree of inference on the part of
the learner increase in this order. In brief, a leaming strategy describes
how “new" knowledge is acquired and synthesized by the leammer. The

various strategies are discussed below.

1.2.1. Rote Learning

Rote learning refers to the direct implantation of knowledge. It
involves two parties : a student and a teacher. Knowledge is spoon-feed
into the student by the teacher . The role of the student is passive and the

degree of inference on the part of a student is very limited during the



learning process. In its strictest form, no modification or rejection of the
implanted knowledge takes place during the process. The major activity
conducted during the acquisition process is to index the acquired
knowledge for later retrieval. Programming is a form of rote leaming in
the sense that instructions are provided by the programmer, and the
computer follows whatever it is told to do.

Obviously, the ways knowledge engineers acquire knowledge do not
fall into this category. However in cases where the knowledge engineer
himself is an expert in the application area, rote learmning is the most
direct and effective approach to build expert systems. The long iterative
process of interviewing can then be eliminated. The knowledge engineer
simply transplants his own expertise to a computer in a similar fashion as a
programmer writes a program. This is aided by declarative languages
such as Prolog which allows an expert to state the problem and its
solution method in direct declarative form. In fact, a number of

successful expert systems are built by professionals in their own areas.

1.2.2. Learning by Deduction
Added to the core knowledge acquired with a set of inference rules

results in a strategy called leaming by deduction. The inference rules



specify how additional knowledge can be deduced from the core
knowledge during the learning process. No "new" knowledge will be
created using this method. This is because the scope of the knowledge
will be defined once the core knowledge and the set of inference rules
are specified. The inference rules and the initial set of knowledge are
provided by the teacher. Leamning a piece of information involves the
invocation of a deduction mechanism which is computationally more
complicate than the indexing structure used in rote leaming. One can
consider the choice between rote leaming and deductive learning as one
driven by the tradeoff between space and time. In logical terms, for
instance, the fact that all mammals are animals can be stated as : For all x,
Mammal(x) => Animal(x). In rote leaming, to store the fact that human
beings are both mammal and animial necessitates both Mammal(human)
and Animal (human) to be physically resided in the knowledge base. In
deductive learning systems, only the fact Mammal(human) and the above
statement needed to be stored. The fact Animal(human) can be deduced
by applying the modus ponen inference rule as follows :
Mammal(human)
For all x, Mammal(x) => Animal(x)
Animal(human)
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The price to pay for the space gained in deductive systems is the increase in
time spent in performing the deduction as illustrated by the above

example.

1.2.3. Learning by Analogy

To learn by analogy is to create new concepts by transforming and
augmenting existing ones which are similar to the new concepts. A concept
can be a physical object or a problem solving method. The process is
usually broken down into two phases. In the first phase, existing concepts
which bear strong similarity with the new concept are searched for. These
concepts are then mapped to the new concept during the second phase. In
order to be successful, this approach requires a measure of similarity.
A general definition of this measure is difficult. It depends on the kinds of
concept that we are considering and the context of comparison.

Leaming by analogy requires a certain amount of inference on the
part of the learner in the way that a learner can choose the similarity
measure that he will use to acquire knowledge. Suppose a learner thinks
that driving a tank is similar to driving a bulldozer, the direction he will
pursue in learning the concept of a tank will be very different from the
one that he thinks buses and tanks are similar.
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1.2.4. Learning by Induction

Induction is to infer from specific to general. Usually, the induction
process is driven by a model that specifies the form of relationship that
we want to learn from a collection of examples. Examples of a concept
are analyzed and the results are used to fill in the details of the model. The
role of the teacher is to provide advices in the selection of models and the
criteria of the induction process.

The discipline of statistics is the study of inductive inference from a
rigorous mathematical perspective. For instance, a linear regression
model assumes a linear relationship between the given dependent and
independent variables. The induction process is to infer a linear
regression line that best matches the examples. The goodness of fit
measure is also defined in the model (ie. least square) and the actual
value of which depends on the examples in hand.

In acquiring diagnosis rules in medicine, a knowledge engineer
might try to infer symptoms-disease rules from past diagnosis cases. In
essence, he tries to generalize these diagonses so that they can be applied
in future cases. Notice that the induction process is examples driven and
is subject to bias data samples. Also, the leaming process depends on the
number and types of examples (ie. positive and negative) available.
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1.2.5. Factors Affecting the Choice of Learning Strategies
Except for some ad hoc systems, almost all existing learning
systems fall into one of these categories or their variants. The question
of which one to apply in building a knowledge acquisition system depends
on a number of factors as follows :
1) Problem domain - The new problem domain and its relationships
with others have significant impacts on the efficiency and effectiveness of
the knowledge acquisition process. Three kinds of relationships are
identified .
a) Disjoint problem domains - Two domains are disjoint when they
are very different in their problem contexts. In these situations, there is no
apparent learning strategy that is preferred over others. But in cases when
two domains are identified to be very similar, analogy leaming technique
can be applied to learn the new concept from existing ones.
b) Problem domain is covered by other existing domains - If a
problem domain is known to be covered by others that have already been
learned, then the new domain can be leamed by imposing conditions on the
covering domain. The covering relationships between concepts can be
represented by a hierarchy tree. By climbing down the hierarchy tree, the

knowledge that are common between the two can then be deduced using
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the background knowledge provided by the more general one.For
instance, the concept Animal properly contains the concept of Mammal.
Therefore, by imposing conditions on Animal such as

Is-a (x, Mammal) => Is-a (x, Animal), and

Feed-milk (x) => Is-a (x, Mammal),
we can deduce all properties of Mammal from Animals.
c) Problem domain covers other domains - On the other hand, if the
new domain covers some existing domains, then the new domain can be
learned by generalizing the existing ones. Unlike climbing down the
hierarchy tree which is truth preserving, climbing up the hierarchy tree is
false preserving. This is because the generalization process, which is
basically an induction procedure, does not guarantee to produce
knowledge that are valid for the new domain.
2) Problem type - Problems, despite their domains, can be classified
into generic tasks (eg. planning, classification) as proposed in
[Chandrasekaran 1986]. In fact, techniques have been developed to
acquire knowledge for some generic tasks. These techniques might adopt
different learning strategies. Thus, given a problem that can be classified
into a generic task, existing leamning strategies for this generic task can be

applied.
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3) Availability of expertise - In cases when there is an abundance of
expertise or the cost of expertise is low, it is feasible to adopt less
complicate learning strategies such as rote leaming and deductive
learning. However, in situations where expertise is scarce and costly, a
learner has to play a more active role in inferring the knowledge from the
limited knowledge sources. Leaming by analogy and induction are
resorted to in these situations by transferring the load from the experts to
the leamers.

In order to carry out the task of knowledge acquisition in an effective
manner, a system should not be restricted to a single leamning strategy.

Indeed, existing systems usually exhibit hybrid leaming behavior.

1.3. A Framework of Knowledge Acquisition Systems

Fig. 1.1. depicts a framework of knowledge acquisition systems in
the form of a grid. The vertical dimension represents the various learning
strategies discussed in the previous section. To implement a leaming
strategy (or combination of strategies) chosen along this dimension, the
designer of a knowledge acquisition system has to decide on the issues
shown on the horizontal dimension - knowledge representation and

elicitation, leaming operator, and leamning criteria. Together with the
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Fig. 1.1. A Framework of Knowledge Acquisition Systems



16

learning strategy, these correspond to the essential attributes of a
knowledge acquisition system. Our framework does not intend to serve
the purpose of a taxonomy for knowledge acquisition systems. Yet, it
attempts to assist the design of these systems by identifying the essential

features and the crucial design issues.

1.3.1. Knowledge Representation and Elicitation

The issue of knowledge representation is concerned with the
specification of a scheme to state concepts and their relationships. A
number of knowledge representation schema have been proposed [Chang
1973), [Quillian 1968], [Minsky 1975). Some are designed for specific
application [Shortliffe 1976] whereas others are for common sense
reasoning [Schank 1975], [Minsky 1975], [McCarthy 1968], [Raphael
1968]. One question encountered in designing knowledge acquisition
systems is how the final form of knowledge can affect the knowledge
acquisition process ? Answer to this question is crucial to the selection of
a knowledge acquisition methodology. The question can be broken down
into three more refined questions - 1) What are the different forms of
knowledge ? 2) What are the criteria in selecting knowledge representation

forms ? 3) How to elicit knowledge from experts ? Here, a distinction is
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drawn between the grand process of knowledge acquisition and the more
specific task of knowledge elicitation. The latter is merely concerned with

the articulation of expertise and the provision of tools to facilitate it.

1.3.1.1. Knowledge Forms and Selection Criteria

The notion of generic tasks suggested by Chandrasekaran [1983],
[1984], [1986] provides a direction in addressing the first two questions.
In [Chandrasekaran 1986], a generic task is defined as "basic
combinations of knowledge and inference strategies that are powerful
for dealing for certain kinds of tasks". For instance, medical diagnosis
and fault detection can both be categorized as classification tasks. Both of
them involved mapping data (symptoms and defectives) to decisions
(diseases and faults). The two problems, though different in their
domain areas, are structurally similar in their solution methods -
diagnosis rules. Based on the notion of a generic task, it is natural to
have different generic knowledge acquisition methodologies associated
with different generic tasks. The mapping is shown in Fig. 1. 2.

In view of existing systems, there seems to exist evidences to support
the above problem-task-knowledge-acquisition mapping. Here, we focus
on the latter part of the mapping (i.e. between knowledge forms and
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acquisition techniques). Let us briefly review common classes of

knowledge representation and their learning techniques.

Logic - Mechanical theorem proving [Chang 1973] as the knowledge
processing technique is employed by expert systems using First Order
Logic (FOL). Facts and relationships are stated as logical statements. A
logical statement is a collection of primitive assertions (ie. predicates)
connected by logical operators (eg. AND, OR, NOT). Leaming
techniques have been developed to acquire knowledge stated in FOL or
the likes. Sammut described a system MARVIN [Sammut 1981] that
can leam a

concept stated in Prolog like statement by generating instances of the
concept (eg. the geometric configuration of an arch) and check with the
expert whether they are consistent or not. If an instance is too general, it
will be specified until it is consistent with the expert's conclusion. In
[Buntine 1986], Buntine discussed an induction algorithm for Hom
Clauses. Given a collection of Horn clauses, the algorithm infers
relationships between these clauses by generalizing the initial set of
clauses . PLANT/DS, a system developed by Michaski and Chilausky

[{1980] to acquire soybean disease diagnosis rules, used an extend version



of FOL called APC - Annotated Predicate Calculus.In these systems, a
log..al statement is a description of a concept or an object. Interestingly,
induction is the popular strategy used to learn a concept. Examples of a
concept are stated in terms of logical statements. The generic approach is
to generalize these statements to ones that are more descriptive and at
the same time consistent with the given examples. More will be discussed

on leaming operators in the next section.

Semantic Network/Frame - Marker propagation is used in semantic
network based knowledge systems in problem solving. Using semantic
network, concepts are represented in the form of graphs with nodes
representing instances, concepts (Color) and attributes (eg. Blue), and
arcs representing relationships (eg. is-a) Frame is a restricted form of
semantic network [Minsky 1975] which has been used for common sense
and default reasoning. This is made possible by the default slots of a
frame. By assuming default values for these slots unless otherwise
specified, generic schema for classes of problem solving methods can be
represented. In [Winston 1575], Winston presented a leaming program
that leamed the structural descriptions of objects in the block world using

induction technique. Examples of an object are provided. These examples



21

take the form of graphs. Differences and similarities between examples are
derived by matching pairs of graphs. Three kinds of match for both nodes
and links are defined : completely match, partially match, and does-not
match. Information obtained is used to control the search of a general

description of the concept.

Production Rules - Knowledge in the form of IF-THEN rules is another
common knowledge representation scheme. Production rule is similar to
logic in its form of representation. The condition and conclusion of a rule
can be readily translated into two conjunctive statements with the former
implying the latter. Thus, leaming techniques associated with logic can
be applied in rule based systems as well. However, there are basic
differences between the two in their inference mechanisms. Instead of
having only one inference mechanism (resolution-refutation), different
inference procedures are adopted in different production systems. For
instance, backward chaining is used in MYCIN (Shortliffe 1976] while a
recognize-act cycle is adopted in OPSS [Forgy 1981] as the inference
mechanism. Intelligent knowledge acquisiton systems called rule

acquisition systems such as RULEGEN in meta-DENDRAL [ Buchanan
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and Mitchell 1978] and AQ11 [Michalski and Larson 1978] have been built
to acquire rules using the induction approach.

Although not completed, the forms of knowledge discussed above
cover a large portion of existing expert systems which associated with a
wide range of generic tasks (eg. script, classification, planning). The
notion of classifying problems into generic tasks enables us to select a
knowledge form which is the most appropriate for a given problem. Once
a knowledge form is chosen, the acquisition technique follows
accordingly. Thus, it seems plausible to design generic acquisition
procedures for generic tasks. In search of a classification scheme for
generic tasks, however, problems remain in deciding the set of criteria of
the classification scheme. Nevertheless, it provides a framework to guide
knowledge engineers to relate task domains to knowledge forms and to

the selection of acquisition techniques.

1.3.1.2. Knowledge Elicitation - A Psychological Approach
Once a knowledge form is selected, the next step is the eliciting and

coding of expertise. The encoded knowledge might not be in its final form.

This initial chunk of knowledge provides the basis for further refinement



23

and modification. In learning by induciton, this corresponds to the
examples that will be generalized by the induction procedure.

As mentioned in Section 1.1., expert knowledge are difficult to elicit
in situations when they are not subject to conscious introspection. Expert
knowledge usually contain context senstive concepts which are difficult to
articulate in isolation from others or without a proper context. For
instance, an expert in political affairs might not accurately express his
assessments on current U.S./U.S.S.R relation without referring to
previous events. Furthermore, it is easier for the expert to focus on
certain traits of a concept at a time rather than to come up with grand
statements describing it. This is also true in making comparisons between
concepts. Comparing pairs of concepts are more informative than between
a concept and a group of concepts. Despite the advantage of fragmenting
the knowledge domain, problems remain as how to synthesize back the
individual knowledge fragements.

There is an emerging role of Psychology in this endeavor.
Numerous knowledge acquisition systems have been built using
techniques from psychology. These techniques, embracing personal
construct theory, multidimensional scaling, and clustering, are

generally called measurement and scaling techniques.



These techniques provide methodologies to measure, compare, and
categorize fuzzy concepts, especially perceptions and physical feelings
which are difficult to articulate by experts in absolute terms. In medical
diagnosis where the feeling of a patient is an important factor in
determining a diagnostic action, these measurement techniques have
been valuable tools to elicit this information. They are suggested in
[Gammack & Young 1984] as means of eliciting knowledge form experts
for the purpose of building expert systems. Let us briefly review these

techniques.

Personal Construct - The personal construct theory proposed by Kelly
[1955] suggested that each individual seeks to predict and control events by
creating theories of the world. Furthermore, these theories exist in the
form of constructs in each person's mind. Kelly defined a construct as a
bipolar scaled dimension measuring the similarity and contrast between
events. Personal construct theory has been the basis for systems such as
ETS [Boose 1984], [Boose 1985] and AQUINAS [Boose and Bradshaw
1986]. Personal constructs are implemented in the form of repertory
grids in these systems. In its simplest form, a grid consists of two

dimensions - concepts and traits. Entries of a grid are numbers with values



range from 1 to 5. Each number corresponds to a relative measure of a
trait associated with a concept. To elicit knowledge from experts using
this technique includes the followings : 1) identify the concepts, 2) identify
the traits that discriminate the concepts in 1), and 3) fill in the entries of
the grid form by 1) and 2).

Multidimensional scaling - Multidimensional scaling technique is a
variant of least square fitting methods. The input data is a symmetric
matrix with each element representing the distance between two concepts.
Depending on the subject to be studied, the distance can be a measure of
similarity or difference. In the context of medical diagnosis, entries of the
distance matrix, for instance, might represent the relative degree of pain
between pairs of heart diseases. The iterative algorithm then attempts
to fit the distance matrix to the required dimensions by minimizing the
stress [Kruskal 1964). Plots showing the relative positions of concepts can
then be obtained for different pairs of dimensions. The meaning of each
dimension is still subjected to human interpretation. For the purpose of
eliciting knowledge, the technique can be used in both direction. In the

reverse direction, this is done by presenting to an expert a plot of concepts



and ask the expert to locate the appropriate position of the new concept on

the map.

Clustering - Clustering technique is generally used as a taxonomical tool
[Johnson 1967]. Input to the cluster procedure is a symmetric distance
matrix and a number specifying the number of clusters to be formed.
The dimensions of the matrix is the same as the the number of data objects.
There are various types of clustering procedure with hierarchical
clustering procedures being the most common one. In an iterative fashion,
a hierarchical procedure searches and merges the closest pair of objects
into one object until the number of objects is reduced to the required

number. The output is a taxonomy of the objects in the form of a tree.

1.3.2. Learning Operators

During the learning process, knowledge is constantly being revised
or generated from existing ones. Learning operators are the means to
alter the descriptions of a concept. These operators are actually functions
that map a concept to another. Conceptually, there is no leaming
operator in a leamning system based on rote leaming because the student is

not allowed to change the description of a concept once told by the
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teacher. However, for retrieval purposes, the form of representation
might be changed, allowing an effective indexing structure to be
constructed.

In case of a deductive learning system, learning operators correspond
to the inference rules associated with the system. First Order Logic
provides a formal model for many deductive leamning systems. It
provides a language to state knowledge and rules of inferences to
make deductions. The knowledge so generated is not "new" but logical
consequence of a deduction process. Modus Ponen together with
universal generalization and existential generalization form the core of
inferences rule in First Order Logic.

To leamn by analogy normally requires the determination of a
sequence of operations necessary to map a concept to another. The
mapping process is the computational procedure associated with an
analogy measure. Using the notion of problem space introduced by
Newell and Simon [1972], Carbonell [1983] defined analogy leaming as
a process of mapping and searching in two spaces - the original problem
space and the analogy transform problem space. A solution to a problem
represents a path in the problem space. To solve a similar problem using

the analogical approach, existing solution of a similar problem is



mapped into the analogy transform space as a point representing the
initial state of the transform space. A series of transformation is applied
to the initial state until a new state in the transform space that satisfies the
specification of the new problem is obtained. The new state in the
transform space is then mapped back to the original problem space as a
solution path for the new problem. Under Carbonell's framework, the
transformation operators are the learning operators that perform the
mapping process.

In learning by induction, despite the form of knowledge selected,
there are basically two kinds of operators for systems using induction
techniques, namely, generalization and specialization operators. For
example, the concept Person(John) can be generalized to for all x,
Person(x). On the other hand, by imposing more condition to the
concept, it can be specialized to

For all x, Student(x) => Person(x)
That is, John is a person only if he is also a student. These two kinds of
operators vary in their operations under different knowledge forms. Yet,
they all serve the functions of
1) generalizing a concept

2) specializing a concept
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In [Michalski 1983], these operators take the form of rewriting rules.
Some of the essential operators are listed below :

G lization O Specialization O
1. Dropping condition Adding condition

2. Adding alternative Dropping altemative

3. Extending reference Closing reference

4. Climbing generalization tree Climbing specialization tree

In [Winston 1975] semantic network is used to represent structural
objects and their relationships. Examples of a concept such as an arch
is represented by graphs. Generalizations and specializations of concepts
take place by evoking graph operations - deleting, adding, and comparing
links and nodes.

The selection of learning operators depends on 1) the leamning
strategy used and 2) the knowledge representation form. Therefore, it
is essential to define these two attributes of a knowledge acquisition

system before the issue of leamning operators can be addressed.



1.3.3. Learning Criteria

Leaming criteria determine the goal of a learning process. Some of
these criteria might be in conflict with one another and a compromise is
usually required to resolve this. In rote learning systems, the obvious
criterion is that the knowledge acquired is identical to the ones supplied
by the teacher. The student simply makes sure that all instructions are
received and properly indexed.

In the case of deductive systems, the basic criteria are consistency

and completeness. In logical terms, consistency means, given an

interpretation, all true statements can be deducted using the inference
rules. Completeness refers to the ability to find a contradiction if one
exists. Ideally in leamning by deduction, new knowledge acquired from
experts or generated by the system itself should satisfy these two criteria.
Yet, the two criteria are seldom satisfied in practice deal to limited
computation resources.

In systems that learn by analogy, learning criterion is based on the
similarity measure defined by the system. The analogy measure is
expressed as a function that map two concepts to a real number as

follow:
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Analogy : Dom(Concept)XDom(Concept) --> R,
where Dom(Concept) denotes the domain of a concept.

The simplest example of an analogy is the function absolute
difference (ie. Il) of two real numbers. Given the definition is a
topological one, for example, 3 is more closer to 4 than 5. That is, 13-4] <
13-51. For concepts that are multidimensional - one that can be described by
a set of features. Tversky [1977] presented a similarity measure which
defined on the feature set of a concept. The degree of similarity between
two concepts increases with the size of the intersection of their sets and
decreases with the size of the intersection of the two complement sets.
For concepts that are identified by their structures, the measure of analogy
is defined on the sequence of structural transformations required to
transform a concept to another. Each transformation is given a weight (or
cost). By adding up all the weights associated with a transformation
sequence, one obtains an index indicating the similarity between the two
concepts. One example is the measuring of distance of two sequences of
symbols [Levenshtein 1966]. These measures are concemed with the
apparent structural differences between two concepts.

For more complicate knowledge structures, Gentner in [1980], (1983]

described a mapping process that transform a descriptive structure
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from one domain (base) to another (target). Predicates and relations are
systematically deleted and added to the base structure to match with the
target structure. The theory of structural mapping is the basis of CARL
[Burstein 1983]. CARL is a learning system designed to learn the
semantics of assignment statements for the BASIC programming
language. Concepts such as PUT-IN-BOX are stated in frame like
structures. During the leaming process, CARL draws on analogy
between variables in a computer and objects in a box. The success of
analogical learning depends heavily on the choice of the analogy measure
[Winston 1980]. However , a general measure of analogy is difficult to
determine. This is especially true when the meaning of analogy between
two concepts varies under different perceptions and situations.
Angluin and Smith [1983] surveyed different induction methods
and criteria from both the practical and theoretical standpoints. In
general, there are two fundamental criteria pertaining to learning by

induction namely, simplicity and goodness of fit.

Simplicity - In leaming a concept, a simple yet powerful description is
most desired. Simplicity can be interpreted as the general applicability of a

concept description. A very specific description might find itself too
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limited to be applied in different settings. Furthermore, human tend to
form stereotype of concepts for the purposes of efficient storage and
prediction. An induction procedure, which is designed to replace
knowledge engineers in acquiring expert knowledge, should consider this

cognitive behavior as a primary criterion.

Goodness of fit - A simple description, however, might be too broad to
apply in other situations. In order to be useful, specific instances of a
concept cannot be generalized too much. To restrict the degree of
generalization, examples of a concept is provided to guide the
generalization process in such a way that the final concept description

obtained should be consistent with the examples provided.

These two criteria exist in various forms in different learning
systems. In [Larson and Michalski 1977],[Hayes-Roth 1976], they take
the form of maximally-specific conjunctive generalizations (MSC-
generalizations). A conjunctive generalization is a description of a
concept obtained by forming the conjunction of a group of primitive

statements (eg. predicates). €A  maximally-specific conjunctive



generalization is the most detailed description that holds true for of all
examples of the concept.

However, MSC-generalization is primarily used to generate
description for a set of positive examples. Only positive traits of the
examples are taken into account, making the MSC-generalization too
general to apply in other circumstances. To overcome this, negative
examples of a concept are also used to restrict the degree of
generalization. When negative examples are used, the criteria take the
form of two parameters which specify the number of positive and negative
examples covered and rejected by a rule [Tam, Holsapple and Whinston
1987]. A special kind of negative examples called Near-Miss examples is
suggested by Winston [1975] to control the generalization process. A
Near-Miss example is a negative example that differs in one attribute
from the concept. Near-Miss examples offer valuable information in
identifying a concept. Yet in general, Near-Miss examples are difficult to

obtain.

1.4. Conclusion
In this chapter, we have presented a framework for building

knowledge acquisition systems. The interplay between learning strategy,
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knowledge form, learning operator, leaming criteria, and their
influencing factors are summarized in Fig. 1.3. Each circle represents an
attribute which has to be determined during the design process.
Squares denote factors affecting the decisions pertaining to an attribute.
Arrows representing dependence relationship. Implications
derived from

Fig. 1.3. can serve as guidelines in designing a knowledge acquisition
system by

1) identifying the essential attributes of a knowledge acquisition system
- We have identified four attributes : learning strategy, knowledge
representation and elicitation, learning operator, and learning criteria.
attributes.

2) identifying the intimate relationships between these attributes and the
factors pertaining to the application domain - There are a number of
factors affecting the choice of each attribute. As shown in Fig. 1.3., the
choice of a learning strategy depends on three factors : problem domain,
problem type, and availability of expertise. The notion of generic tasks
enables us to select a proper knowledge form by classifying problems into
generic tasks and to map these tasks to their representation forms. For

knowledge that is difficult to elicit, measurement and scaling techniques
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are suggested. As soon as a learning strategy (or combination of strategies)
and a knowledge form is determined, the definitions of learning operators
and learning criteria follow accordingly.

3) providing a framework for the design procedure - The following
outlines a design procedure as implied by Fig. 1.3. First, the problem
domain and types are identified. Next , the new problem domain is
compared with existing knowledge domains to discover the various
relationships (see Section 1.2.). Information obtained is used to choose a
learning strategy. Given a generic task classification scheme, a proper
knowledge form is selected. At this point, both the attributes of knowledge
representation and learning strategy is defined. The next step is to elicit
expertise and encoded them in the knowledge form selected. To elicit and
ecode this knowledge might require application of phychological
techniques in situations where expertise is difficult to articulate. Finally,
the issue of learning operators and learning criteria are defined. As
mentioned in Section 1.3., these two attributes depends on the learning

strategies selected.
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CHAPTER 2
KNOWLEDGE REFINEMENT OF EXPERT SYSTEMS

2.1. Introduction

The conventional way of organizing an expert system as depicted in
Fig.2.1. does not provide adequate interfacing between the knowledge
acquisition system and the other components of an expert system.
Knowledge acquisition and refinement are mostly manual tasks that are
performed exogeneous of the expert system. The revised knowledge is
then transplanted back to the knowledge base. The process is laborious and
renders it very inefficient and uneconomical to apply expert systems in
rapid changing domains.

In general, the term "knowledge acquisition” refers to the process of
collecting domain specific knowledge from human experts. The various
techniques to acquire knowledge have been discussed in the previous
chapter While knowledge acquisition is a "one shoot"” process, knowledge
refinement is a continuous process which is performed during the entire
life-span of an expert system. In fact, the life-span of an expert system is

directly determined by the validity of its knowledge base, which in tumn is
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determined by the extent knowledge is refined to match up with the
changing domain. Knowledge refinement is a major issue in the study of
expert system and is of great concemn to both practitioners and academics.
However, not much work have been done 30 far in this area.

2.2. Knowledge Refinement

The principle of knowledge acquisition as discussed in Chapter 1 is
generalized to knowledge refinement. We define the process of knowledge
refinement as a sequence of knowledge acquisition tasks with each
triggered by an updating signal generated by the user or by the expert
system itself. The idea of updating signals is to alert the expert system that
the validity of the knowledge base has fallen below a threshold level and
need to be revised.

2.2.1. A Measure of Knowledge Base Validity

The validity of knowledge base is difficult to measure on an absolute
basis because expert system is basically a program that imitate the
reasoning process of human experts. The best benchmark of the
performance of an expert system is that of human experts. The validity of

a knowledge base could then be mesaurcd by comparing the conclusions
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generated by the expert system with those proposed by human experts in
solving identical problems. For instance in medical diagnosis, diagnostic
decisions of the expert system and the physicians can be compared to
identify any discrepancy between the two parties. If the conclusions are so
far off, then the knowledge base of the expert system is concluded to be
invalid and has to be revised.

Using human experts as the oracles, we can provide a benchmark in
assessing the performance of an expert system. Since conclusions are
deduced from the knowledge base, the performance of an expert system
could be determined by the validity of the stored knowledge. This permits
us to use the performance measure to assess indirectly the validity of the
knowledge base. However in using the same measure to evaluate
performance and knowledge base validity, we have implicitly made the
assumption that the inference mechanism of the inference engine does not
deviate much from human experts. This assumption is justified in the sense
that the way inference is made does not change as drastically as the
knowleige itself in most situations. Yet we should bear in mind that there
is still a chance that the declining performance of an expert system is not
due to an invalid knowledge base but rather to an invalid inference

mechanism.
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2.2.2. Updating Signals

Updating signals are generated internally by the expert system or on
request by users. Updating requests are generated internally when the
performance of an expert system has fallen below a threshold level. To
implement this, we need a log of conclusions generated by the expert
system and audit them periodically. Depending on the degree of accuracy
required, all elements in the log is used or only a portion of which is used
in performance estimation. In the latter case, we need to determine the
sample size and the acceptance level of the sample.

Expert systems organized in this way are self-controlled systems that
adjust themselves to changing domains by responding to feedbacks from
users or signals generated internally (Fig. 2.2.). The performance of an
expert system is the control parameter of the entire system. It sets forth the
criterion of revision and its value is determined by the log of previous
conclusions.

The knowledge base can also be updated on request by users. This
happenr when 1) a user wants to change the threshold value of the
performance measure, or 2) a user want to add or delete knowledge from

the knowledge base. In both cases, the validity of the knowledge base may
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no longer in compliance with the given threshold value and need to be

updated

2.3. An Architecture to Integrate Knowledge Refinement in
Expert Systems

A generic architecture that support knowledge refinement is shown in
Fig. 2.3. It consists of five functional components : 1) interface, 2)
inference engine, 3) knowledge base, 4) knowledge refiner, and 5)
decision log. The first three are the basic components of an expert system.
The knowledge refiner and decision log are additional components that
provide the mechanism and the information to refine the knowledge base.

The interface provides input/output media between users and the
other components. It should provide user friendly interface that are easy to
comprehend. It can be streamlined to certain group of end users and may
take the form of icons, queries, natural language, graphics, image
recognition, or real time signals from other devices.

The reasoning function is performed by the inference engine. It is
implemented as a control procedure that determines how knowledge is
combined and processed. The reasoning process can be forward or

backward. In a forward reasoning process, knowledge is deduced from a
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collection of known facts. In backward reasoning, the process is reversed :
it starts from a hypothesis and check whether it can be validated from the
existing knowledge base. In a rule based system, they are commonly
referred to as forward and backward chaining respectively.

In a knowledge base, there are many forms of knowledge including
procedural knowledge, reasoning knowledge, presentation knowledge,
and model knowledge. This is the reasoning knowledge that distincts a
knowledge base from a conventional database system. Thus, the proposed
architecture is primarily concerned with reasoning knowledge in the
context of knowledge refinement.

The function of the decision log is to keep track of the changing
reasoning process of human experts. Decisions generated by an expert
system is stored in the log. By doing so, an expert system can evaluate its
performance in terms of the number of contradictory decisions between
human experts and the expert system. Decisions are recorded in the form
of reasoning chain. A reasoning chain is the sequence of inference steps
that lead to a decision. Entries in the decision log are audited periodically
by exper.s to check for contradictory decisions. When a decision is

audited, the entire reasoning chain of the decision is examined. Conflicting
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decisions along the reasoning chain are identified and updating signals are
then generated accordingly to refine the knowledge base.

Once the number of contradictory decisions in the decision log has
fallen below a tolerance (threshold) level, an updating signal will be
generated to inform the knowledge refiner to revise the knowledge base.
The function of a knowledge refiner is to update the knowlege base using
the knowledge acquisition techniques discussed in the previous chapter.
The input of the knowledge refiner are the conflicting decisions and the
existing knowledge base. The output would be a new knowledge base that
satisfies the tolerance level.

Like the other components, the knowledge refiner and the decision
log are permanent integrated components of an expert system and operate

on a continuous basis.

2.4. Concluding Remarks

We have extended the conventional architecture of expert system to
incorporate a mechanism of knowledge refinement. Two functional
components , decision log and knowledge refiner, are added to provide the
information and mechanism to refine the knowlege base respectively. In

the next two chapters, task specific reasoning systems are studied under
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this architectural framework. The two tasks are pattern recognition and
classification. Furthermore, these two tasks are applied to the domain of
security trading. Our intent is not to study security trading per sec but
rather to provide a realistic setting to demonstrate the applicability of the
proposed architectural framework in different task domains.
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CHAPTER 3

PRICE MOVEMENT PATTERNS REPRESENTATION,
ACQUISITION, AND REFINEMENT

3.1. Introduction

In this chapter, we will study the task of pattern recognition in the
context of security trading. We will primarily focused on the following
four issues : 1) Pattern knowledge representation, 2) Pattern recognition
mechanism, 3) Noisy pattern discrimination, and 4) Pattern knowledge
acquisition and refinement. Before we procede, let's briefly review the
practice of price movement pattern recognition, commonly called

technical analysis in the security industry.

3.1.1. Background

In formulating a trading strategy, a trader may study the
movements of security prices in the hope of discovering trends and
patterns on which he can capitalize. Numerous techniques have been
proposed to aid traders in this aspect. They range from simple high/low

point charts to complex trend-following programs that require



considerable computing resources. These techniques are collectively
referred to as technical analysis. The practice of technical analysis is not
uncommon, despite its lack of theoretical justification. The common
denominator of these techniques is their assumption of the validity of
historic information in predicting price movements. This is contrary to
the Market Efficiency Hypothesis which contends that movements of
security prices follow a random process. Yet, it does not obscure the fact
that technical analysis is used daily by traders across a broad range of
securities. Evidently and practically, it serves the function of decision
support rather than "fortune teller” as most theorists perceive.
Automation of technical analysis is at the present limited to
trend-following programs. These programs use statistical techniques such
as moving average and time series to forecast future prices according to
past trends, alerting the trader when the actual price movement deviates
from the forecasted trend. Trend following is limited in the sense that it
can only detect deviations from the trend. Except for some simple ones, it
is not capable of identifying more complex trends. More complicated
patterns (eg. valley, head and shoulder, Elliot wave etc. ) still have to be
"eyeballed” by traders. In general, technical analysis is primarily

concemed with recognizing pattemns of price movements. In addition to
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the basic set of patterns (e.g. head and shoulder, valley ) commonly used
in technical analysis, a trader might add his own set of patterns.

Under our refined view of technical analysis, which is pattern
recognition, the task of automating technical analysis is reduced to
provide the followings :

1) Pattern representation form

2) Mechanism to recognize and discriminate different patterns
3) Mechanism to handle noisy patterns

4) Techniques to acquire and refine pattern knowledge

In this chapter, formal language theory is applied to address these
four issues. The rest of the chapter is organized as follows : Section 3.2.
reviews the application of statistical discriminant analysis in pattern
recognition and discusses its drawbacks. In Section 3.3., formal language
is used to describe price movement patterns, and the task of pattern
recognition is reduced to parsing a sentence with a set of phrase structure
grammars. Section 3.4. will address the issue of pattern knowledge
acquisition and refinement from an architectural perspective based on

Chapter 2.
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3.2. Statistical Pattern Recognition

One approach to the task of pattern recognition is statistical
discriminant analysis. A pattern such as the one in Fig. 3.1. is
segmented into n-1 identical divisions. Thus, the continuous time span of
a pattern is characterized by n discrete time spots. A pattern is

represented by an n-dimensional vector P = (h(t,),h(t,),....h(t,))T where

h(t;) is the price of the security at time t;. The time interval between
consecutive time spots is determined by the trader and it varies according
to the time frame associated with a trading strategy. For instance, an
arbitrage strategy in foreign exchange might require a very short time
interval, say fractions of a second. Given a specific time frame, different
patterns are represented by different pattern vectors. Price patterns are
points in an n-dimensional Euclidean space called the pattern space. The
task of pattern recognition is to partition the R" pattern space. The
objective is to group similar patterns into the same partition and to
provide decision rules that classify pattemns into different pattern classes.
These d¢ :ision rules take the form of discriminant functions. For each
partition which represents all the possible forms of a pattern (e.g. valley

), it is associated with a discriminant function D. D is a function
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which maps R® to R. Suppose the pattem space is divided
into M partitions G,,G,,..G,, , with each corresponding to a pattern class.
There will be M discriminant functions D,,D,,.. , D,. To recognize a
price pattern, say P, the M discriminant functions are applied to V,, -
the pattern vector representing P. The values of D,(V,), Dy(V)),..
Dy(V}) are then compared with each other to determine to which partition
V,, belongs. Suppose D;, 1 i< M represents the function that measures
how likely V., is an element of G, ; the decision rule might be defined as

follows :
Vp --> G, such that Dk(Vp) = max {DI(VP),DZ(VP),...DM(VP)}, 1<sks<M

If k assumes more than one value, then one pattern class is arbitrarily
selected and Vp is assigned to it. This approach to pattern recognition is
also called the decision theoretic approach.

In general, the task is composed of two procedures, namely
classifier construction and evaluation. Classifier construction is concerned

with the construction of pattern boundaries which are based on a set of

training samples. The partitions so constructed are evaluated by another
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set of pattern samples to estimate how well the classifier performs in

discriminating different patterns.

3.2.1. Classifier Construction

Given M classes of pattemns, the entries of the training set are samples
of each of the M pattemns. For instance, a head and shoulder pattern might
exist in slightly different forms as shown in Fig. 3.2. The function of this
procedure is to consider a number of different head and shoulder
patterns and to provide a compact form that adequately represents the
entire class of head and shoulder patterns under a particular time frame.
This is then repeated for other pattern classes. Obviously, the result
depends very much on how fairly the sample represents the actual
pattern. Bias samples will certainly degrade the accuracy of the
procedure, and the result obtained will be misleading.

Statistical techniques come into play by assuming each pattem class is
associated with a probability distribution. The most common approach is
to assurae that elements of a pattern class are distributed normally in R".
Consider the case of discriminating M patterns.The first step of

constructing a  classifier is to estimate the parameters of the
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multivariate normal distributions, N(iu,,X,), N(1,,E,),...N(i, .., ). The
sample patterns in the training set are used for the estimation.

Using the sample mean vectors u.'\1,',.....,,', and sample covariance
matrices X,"X,",.Z, ', one obtains unbiased estimates of the parameters.
The next step is to construct boundaries that separate these disributions.
The construction of boundaries is driven by some predefined discriminant
criteria. These criteria might be to minimize the maximum error,
minimize total error, and to maximize interpartition distances etc.

Let us consider one that minimizes the expected cost of

misclassification. The expected cost of misclassification, denoted by ECM,

is defined as follows :
M M
ECM= Zp,(ZP(jli)), in which (3-1)
i=1 j=1
A

p; = the prior probability of the i pattemn class,
P(j!1) = probability of misclassifying a pattern of the i class to the j class.

The objective is to determine partitions G,,G,,..G,, in R"in such a way that



(3-1) is minimized. It can been proved that minimizing (3-1) is defined by

allocating x € R® to G, k =1,..,M, for which
M
Zp f(x), 3-2)

i=],
i

f,(x) = probabality function of G;

is smallest. (3-2) is smallest when the omitted term, p,f,(x) is the largest.

Thus, we have the following decision rule :
x => G, if pfi(x) > pifi(x), i=k (3-3)
Since p,f,(x) and p;f(x) are always positive, (3-3) is equivalent to (3-4).
x --> G, if In(p,f, (x)) > In(p;fi(x)), i#k ,1SisM (34)

Here, f,(x) is a multivariate normal probability function. That is,

f(x) = r) 1212 1exp(-(x-p)TE; M (x-1)2) , 1SisM (3-5)
We then have the following decision rule :

x --> G, if Dy(x) > D;(k), i=k, (3-6)
where D,,D,,...D\, are the discriminant functions obtained by substituting

(3-5) in (3-4).
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D,(x) = -(n | E, /2 - (x-p)" A (x-w)2 + Inp;, 1=12,.M (3-7)

Estimates of p,, p;’, i=1,..M, can be obtained by counting the number of
patterns belonging to G; from the pooled pattern sample set. Unbiased

estimates of £, and u,, 1 i< M, can be obtained from sample mean

vectors ' and sample covariance matrices L., 1 S i< M. Using these
estimates, we obtain the estimated discriminant functions D,’, D', ... D)/

as follows :

D/(x) =-(In | £ )/2 - (x-u, )" 1(x-u,)2 + Inp;, 1=1,2,.M (3-8)
The output of this optimization procedure consists of hyperplanes
separating the different pattern classes in the pattern space. These
hyperplanes are defined by the estimated discriminant functions which are

linear.

3.2.2. Evaluating Classifier

The discriminant functions so derived have to be evaluated with
another =t of sample patterns. There are a number of techniques for
testing the discriminating capability of these functions. One commonly

used technique is to divide the training sample and testing sample into



equal halves. Performance of a classifier is calculated as a ratio of the
number of misclassifications to the size of the testing sample. Quite
obviously, the larger the size of the training sample, the less likely the
discriminating functions will be distorted by bias sample patterns. Using
the training sample for testing will probably underestimate classification
error and should be avoided. Given a fixed number of sample patterns for
each pattern class, tradeoffs have to be made between the size of the
training sample and that of the testing sample.

A general procedure for constructing a pattern classifier using
statistical techniques is depicted in Fig. 3.3. This approach, however, falls
short in discriminating structural identical patterns under different time
frames. Consider the two valleys shown in Fig. 3.4. They share the same
structural form but only differ in their time frames. Note that our
previous discussions on pattem classification assume that all pattems have
the same time frame. One solution to this problem is to extend the time
frame of the smaller pattern to that of the larger one. The process is called
normalization of patterns. The general procedure is then applied to the
normalized pattern samples. The classification error so obtained might be
very large because the two pattern vectors might locate far from each

other in the pattern space. A partition defined to contain these two vectors
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will probably be so large that a number of other patterns will also be
included, thus increasing the error rate of the classifier. To overcome this,
structural identical patterns under different time frames are characterized
by partitions in different pattern spaces. In other words, pattern spaces of
different dimensions are constructed for structurally identical patterns

with different time frames. Consequently, the decision rule is stated as

"If a pattern vector falls within either of these partitions then conclude Vp

belongs to this pattemn."”

This approach drastically increases the number of pattern partitions
and becomes very inefficient when the number of time frames under
consideration is large. To automate the task of pattern recognition
effectively, we need a compact way to represent structurally identical
patterns. In other words, we need constructs to state a pattern which is
independent of the associated time frame. In the next section, this issue is

addressed from the perspective of formal language theory.



3.3. Linguistic Pattern Recognition

The linguistic approach to pattern recognition in this section employs
lingusitic techniques of formal language theory in stating and recognizing
different patterns. Formal language theory is the study of the mathematical
structure of sets of strings [Aho and Ullman 1968]. The initial
investigation of mathematical lingusitics aimed at trying to understand the
basic properties of natural languages [Chomsky 1956]. In general, a
language is defined as the set of sentences that can be derived from a set of
symbols and a collection of rewriting rules (or grammar rules). The
grammar rules determine how symbols are combined to form sentences of
the language. The number of sentences so generated may be finite or
infinite. Thus, mathematical lingusitics is a powerful tool to describe a
large number of phenomena or patterns by using a finite set of symbols
and a relatively small number of grammar rules. In fact, it has been
applied in a number of engineering domains such as fingerprint
identification [Moayer and Fu 1976), image analysis [Gips 1974],
[Rosen‘eld 1979], [ You and Fu 1979], and character recognition [Stallings
1979}, to name a few.

The lingusitic approach presented here differs from its statistical

counterpart in the way structural information of a pattern is used in the



recognition process. In this approach, structural information of a pattern
is organized in the form of a hierarchy. In essense, a pattern is derived
hierarchically from a predefined set of primitive patterns. The derivation
process is governed by a collection of grammar rules.
To illustrate this, the class of valleys can be described by a language
with its grammar rules shown below.
<valley> ---> <uptrend><downtrend>
<valley> ---> <downtrend><valley><uptrend>
<uptrend> --> /

<downtrend> --->\

Two valleys with different sizes and their derivations are shown in
Fig.3.5.

In this paper, formal language theory is applied to the study of
technical analysis. Different price movement patterns are described by
different languages. Each class of patterns , say valley, is associated with a
pattern language. Sentences belonging to such a language represent all
possible valley patterns which are independent of the underlying time

frames. As will be shown later, the recognition process is reduced to



<Valley>

<downtend><Valley><uptrend>

<downtrend><downtrend><Vallsy><uptrend ><uptrend >

N\

<downtrend> dowmnd><dovnmad><upuland><upu7nd><npulvnd>
I I |
\ \ \ / / /

<Valley>
<downuend><Vallsy><uptrend>
<downtrend><downtrend><upend><uprend>

\ \ / /

Fig. 3.5. Two Valley Sentences with Different Time Frames
and Their Derivations Trees
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parsing a pattern (coded as a sentence) with respect to the different pattern

languages.

3.3.1. Representing Patterns as Languages

The langauge we use to describe a pattern belongs to the class of
language that can be generated by a phrase structure grammar [Aho and
Ullman 1968]. A phrase structure grammar is defined as a four tuple G,
where

G =< Vg Vy,P,S>, in which
1. Vy and V; are the nonterminal and terminal vocabularies of G,
respectively.
2. Vy U V. constitutes the total vocabulary set V of Gand Vy NV = ¢.
3. P is a finite set of grammar rules denoted by o --> B, where a and B are
strings over V with o containing at least one symbol of V.
4. S is the start symbol of a sentence and S € V.

The language generated by G is defined as L(G) = {x | x € V{° such
that S =" x}. L(G) is called the phrase structure language associated with
G. V;* is the set of finite-length strings of symbols in V, including A, the

symbol with zero length. The length of a sentence &, denoted by 1 § | is the
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