
www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize m aterials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the upper
left-hand comer and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a IT x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6"x9* black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Accessing the World s Information since 1936

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

www.manaraa.com

www.manaraa.com

O rder Num ber 8835586

Knowledge acquisition and refinement in expert systems

Tam, Kar Yan, Ph.D.
Purdue University, 1988

U M I
300 N. Zceb Rd.
Ann Arbor. Ml 48106

www.manaraa.com

www.manaraa.com

PLEASE NOTE:

In aH cases this material haa been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Gloeay photographs or pages_____

2. Colored illustrations, paper or print______

3. Photographs with dark background____

4. Illustrations are poor copy______

5. Pages with black marks, not original copy_____

6. Print shows through as there is text on both sides of page______

7. Indistinct, broken or small print on several pages

a Print exceeds margin requirements_____

9. Tightly bound copy with print lost In spine______

10. Computer printout pages with indistinct print______

11. Page(s)___________ lacking when material received, and not available from school or
author.

12. Pagefs)___________seem to be missing in numbering only as text follows.

13. Two pages numbered . Text follows

14. Curling and wrinkled pages_____

15. Dissertation contains pages with print at a slant, filmed as received__

16. Other___

UMI

www.manaraa.com

www.manaraa.com

KNOWLEDGE ACQUISITION AND REFINEMENT
IN EXPERT SYSTEMS

A Thesis
Submitted to the Faculty

of

Purdue University

by

Kar Yan Tam

In Partial Fulfillment of the
Requirements for the Degree

of

Doctor of Philosophy

May 1988

www.manaraa.com

PURDUE UNIVERSITY

Graduate School

This is to certify that the thesis prepared

Tam, Kar Yan

Entitled

Knowledge A cq u is it io n and Refinement of Expert Systems

Complies with University regulations and meets the standards o f the Graduate School for
originality and quality

For the degree of Doctor o f Philosophy______________________________________

Signed by the final examining committee:

Approved by the head o f school or d&fJartment

□ is
This thesis (X! is not to be regarded as confidential

Major professor
Giad. School
I-'oim No. 9
Reviled 9-85

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank Professors Andrew B. Whinston and Clyde W.

Holsapple, for the many hours they spent with me discussing various

aspects of die research reported in this thesis.

The financial support of IBM during my first two years at Kraimert

and the Purdue Research Foundation for the David Ross Dissertation

Grant are also gratefully acknowledged.

www.manaraa.com

TABLE OF CONTENTS

Page

LIST OF FIGURES...vi

ABSTRACT.. viii

CHAPTER 1 - A CONCEPTUAL FRAMEWORK OF BUILDING
KNOWLEDGE ACQUISITION SYSTEMS.................................... 1

1.1. In tro d u c tio n .. l
1.2. L earn ing S tra teg ies... 6

1.2.1.R ote L earn ing ... 7
1.2.2.L earning by D eduction .. 8
1.2.3.L earn ing by A nalogy.. 10
1.2.4.Leaming by Induction .. 11
1.2.5. Factors A ffecting the Choice o f Learning Strategies 12

1.3. A Fram ew ork o f Know ledge Acquisition System s........................14
1.3.1.Know ledge Representation and E licitation............................16

l.3.1.1.IGiowledge Forms and Selection C riteria................. 17
l.3.1.2.Knowledge Elicitation -

A Psychological A pproach.. 22
1.3.2.Leam ing O pera to rs ..26
1.3.3.Leam ing C rite ria .. 30

1.4. C onclu sion .. 34

CHAPTER 2 - KNOWLEDGE REFINEMENT OF EXPERT SYSTEMS...............38

2.1. In tro d u c tio n ... 38
2.2. K now ledge R efinem en t.. 40
2.2.1. A M easure o f Knowledge Base V alidity .. 40
2.2.2. U pdating S igna ls ..42
2.3. An Architecture to Integrate Knowledge Refinement in

Expert System s.. 44
2.4. C oncluding R em arks... 47

www.manaraa.com

iv

Page

CHAPTER 3 - PRICE MOVEMENT PATTERNS REPRESENTATION,
ACQUISITION, AND REFINEMENT... 49

3.1. Introduction..49
3.1.1. Background.. 49

3.2. Statistical Pattern Recognition... 52
3.2.1. Classifier Construction.. 55
3.2.2. Evaluating Classifier..59

3.3. Linguistic Pattern Recognition...64
3.3.1. Representing Patterns as Languages............................... 67
3.3.2. Primitive Price Patterns..68
3.3.3. Intermediate Price Patterns...71
3.3.4. Grammar Rules Construction... 71
3.3.5. Recognizing Patterns...79
3.3.6. Recognizing Noisy Patterns..83

3.3.6.1.A Measure of Similarity of Patterns.....................85
3.3.6.2.Minimum-Distance Error-Correcting Parsers 86
3.3.6.3.Classifying Noisy Patterns...................................94

3.4. Language Acquisition based on Grammatical Inference...........94
3.4.1. Grammatical Inference Procedure..................................96

3.4.l.i.Inference Procedure for Finite-State
Pattern Grammar..99

3.4.l.2.Inference Procedure for Context-Free
Pattern Grammar.................................... 103

3.4.2. Language Refinement using Grammatical Inference 104

CHAPTER 4 - TRADING RULES ACQUISITION AND REFINEMENT 108

4.1. Introduction ...108
4.2. A Language for Trading Rules ... 113
4.3. A Sketch of the Induction Procedures..................................117
4.4. Induction Operators ...122
4.5. Two Induction Procedures based on State Partitioning..........129
4.6. Knowledge Refinement .. 148

CHAPTER 5 - CONCLUDING REMARKS... 151

5.1. Summary..151
5.2. Future Research Directions...152

www.manaraa.com

V

Page

LIST OF REFERENCES... 155

VITA... 162

ft

www.manaraa.com

LIST OF FIGURES

Figure Page

1.1. A Framework of Knowledge Acquisition Systems...........................15
1.2. Problem-Task-Form-Acquisition Mapping...................................... 18

1.3. Dependence Relationship between the Four
Attributes and their Influencing Factors................................36

2.1. Conventional Organization of an Expert System............................. 39

2.2. Knowledge Refinement using Updating Signals.............................. 43

2.3. An Expert System Architecture with Knowledge Refinement.......... 45

3.1. Price Movement Segmentation.. 53

3.2. Two Head and Shoulder Patterns in the Pattern Space......................56

3.3. Procedure for Constructing Pattern Classifiers
Using Statistical Discriminant Analysis.. 61

3.4. Two Valleys with Different Time Frames.......................................62

3.5. Two Valley Sentences with Different Time Frames
and Their Derivations Trees... 66

3.6. Example of Primitive Price Patterns...70

3.7. Chomsky's Hierarchy... 72
3.8. A Peak... 77

3.9. A Zigzag... 77

3.10. An Up-support.. 78

3.11. A Down-support..78

3.12. Pattern C lassifie r...82

3.13. Measuring the Distance Between a Sentence and a Language........... 84

www.manaraa.com

Figure Page
3.14. Transformation o fWWW to a Valley and a Down-support.............87

3.15. A Parse Tree ofW -V with the Expanded Valley Grammar............ 93

3.16. Classifer for Noisy Patterns... 95

3.17. Schematic Diagram of Grammatical Inference............................... 97

3.18. Pattern Recognizer with Language Refinement............................. 106
4.1. Partition of (Trade-Deficit large)(Japan-Prime-Rate high) =>

(Buy Yen-Future)... 118
4.2. Partition of (Japan-Prime-Rate low) => (Buy Yen-Future) 119

4.3. Rules Induction.. 121
4.4. Induction Procedure Based on Space Partitioning...........................130

4.5. Four Combinations of Criteria with No Absolute Ordering............ 133

4.6. Example of Local and Global Criteria... 135
4.7. The Search Tree of the Specialization Procedure - An Example...... 143

4.8. The Search Tree of the Generalization Procedure - An Example.....147

5.1. Components of Pattern Recognition and Classification Systems.....153

www.manaraa.com

ABSTRACT

Tam, Kar Yan. Ph.D., Purdue University, May 1988. Knowledge
Acquisition and Refinement in Expert Systems. Major Professor: Andrew B.
Whinston.

The issue of knowledge refinement in expert systems is addressed in

this thesis. In general, an expert system is composed of a knowledge base

which stores application specific reasoning knowledge, an inference engine

which processes the stored knowledge, and an interface through which

communication links between the users and the expert system are established.

In terms of knowledge refinement, this architecture is dependent on

knowledge engineers to refine its stored knowledge on a periodical basis. The

frequency with which the knowledge base is revised depends very much on

the underlying application domain. Furthermore, the control mechanism of

the inference engine may also need to be updated in order to match up with

the changing inference process of human experts. In the scope of this thesis,

we will primarily focus on the former.

In this thesis, we will generalize the principle of knowledge acquisition

to knowledge refinement of a continuous nature. While knowledge

acquisition takes place in the early stage of an expert system development,

www.manaraa.com

knowledge refinement is applicable during the entire life-span of an expert

system. The thesis starts by presenting a conceptual framework of building

knowledge acquisition systems. Based on this framework, a generic

architecture of expert systems with a provision to refine its own knowledge

base is discussed.

The novelty of this research is to study knowledge acquisition and

refinement in expert system by presenting an architecture and to prove its

validity, at least partially, by streamlining it to some generic problem tasks

which are illustrated with a real-life application.

The thesis is organized as follows : Chapter 1 presents a conceptual

framework of building knowledge acquisition systems. The idea of

knowledge acquisition is extended to knowledge refinement in Chapter 2; a

generic architecture of expert system that are capable of self-refinement of

knowledge is presented. The architecture is then used to construct expert

systems to perform generic problem tasks of pattern recognition and

classifiaction in Chapter 3 and Chapter 4 respectively. Chapter 5 concludes

the thesis by discussing future research directions of knowledge refinement.

www.manaraa.com

1

CHAPTER 1

A CONCEPTUAL FRAMEWORK OF BUILDING

KNOWLEDGE ACQUISITION SYSTEMS

1.1. Introduction

The process of knowledge acquisition is generally regarded as the

bottleneck in developing expert systems [Buchanan 1982]. In a broader

context, knowledge acquisition refers to the collective process of

eliciting, structuring and coding of human expertise in a form that is

computationally feasible on a computer.

Traditionally the task is accomplished through an iterative process of

interviewing between a knowledge engineer and an expert. The

interrogating process, though commonly adopted by knowledge engineers,

has a number of pitfalls from a cognitive standpoint. The major obstacles

against this approach are the inabilities of knowledge engineers to ask

"to the point" questions and the inabilities of experts to articulate their

expertise in concrete terms [Bainbridge 1987].

Eliciting knowledge by asking questions requires a knowledge

engineer to has at least a certain degree of acquaintance with the problem

www.manaraa.com

2

domain. For instance in medical diagnosis, the concepts such as

"symptoms" and "diseases" have to be fully understood beforehand.

Otherwise, the validity of the knowledge base will very likely be impaired.

In some domains, the background knowledge required is enormous,

making tire interview technique infeasible and inaccurate if applied.

Furthermore, it is not uncommon that experts make their decisions

which are not available for conscious introspection. Cognitively, this

phenomenon occurs because human often cannot get access to their

mental processes that lead to their final decisions. Ericsson and Simon

[1984] suggested that only those information reside in short term memory

can be verbalized. Since expert knowledge embrace skills, experiences,

and problem solving techniques that have evolved through years of

practice, they are particularly difficult to articulate using tire interview

technique.

Various other approaches have been proposed to circumvent the

bottleneck problem in knowledge acquisition. According to the role of

computer played in the process of knowledge acquisition and the

degree of learning performed on the part of tire acquirer (a knowledge

engineer or a computer based knowledge acquisition system), they can be

classified into two main streams of approaches.

www.manaraa.com

3

The first approach follows the direction of interviewing by

improving the skills and introducing new techniques to aid a knowledge

engineer in the knowledge acquisition process. The setting of this

approach is still an iterative process between two parties - knowledge

engineer and expert.

Newell and Simon [1972] proposed a way to elicit human expertise by

having the experts to "think aloud" in a problem solving process. This

method is called Protocol Analysis and is suggested to be a

methodology in developing expert systems [Waterman 1971]. The idea is

to study how experts solve problems by recording verbal transcripts of

sample problem solving processes. These transcripts are then analyzed

in detail. A transcript represents a solution path in solving a problem. It

reveals sequence of problem solving events conducted by an expert in a

problem solving episode.

A more elaborate variant of protocol analysis is taken in [Belkin

1986] in which interactions between users and librarians in document

retrieval situations are first observed and recorded in the form of audio

transcripts. Next, discourse analysis [Hendrix 1979] is applied to the

transcripts to identify and specify the functions of an intelligent interface

for a document retrieval system.

www.manaraa.com

4

For protocol analysis, the knowledge granularity is at the utterance

level, making the analysis a very time consuming process. Furthermore,

analysts require considerable training in psychology in order to attain a

satisfactory competence level. Ecrisson and Simon in [1984] gave a

comprehensive account on the problems of eliciting knowledge using

veibal data.

Another approach is taken in [Lafrance 1986] to formalize the

interviewing process by proposing a knowledge acquisition grid. A

knowledge aquisition grid represents a taxonomy of question types and

forms of knowledge. It serves as a framework and a systematic way to

train knowledge engineers to relate the form of knowledge (eg. Scripts,

Rules-of Thumb) with the types of questions (eg. cataloging categories,

ascertaining attributes) to be asked during an interview.

One common feature shared by these techniques is that they are

basically manual techniques. The use of computer is limited to the

analysis of data (eg. utterances in a transcript) rather than on the

acquisition process itself. As a consequence, the inherent limits

associated with these techniques on the effectiveness, completeness and

cost of the process have led to research in automating the task by

building computer based knowledge acquisition systems. By delegating the

www.manaraa.com

5

task to a computer, the duration of the process can be shortened to a

large extent b y :

1) Direct encoding of expertise in a form recognizable by the inference

engine.

2) Allowing rapid construction of prototypes to be assessed by experts and

end users in the early stage of the development process.

3) Reducing the time spent in debugging the knowledge base by avoiding

die possibility of an inconsistent knowledge base. This is accomplished by

checking the consistency and completeness of the acquired expertise using

a deductive mechanism.

In this chapter, the issue of building knowledge acquisition systems

is addressed from the perspective of machine learning. We will present a

framework that identifies the essential attributes of a knowledge

acquisition system. The objective is twofolded. First, it explores the

various techniques used in knowledge acquisition. Second, a framework

is presented to provide a systematic view and guidelines for the design

of knowledge acquisition systems. Attention is placed on the mapping

between learning strategies and the other attributes of a knowledge

acquisition system. By doing this, we attempt to abstract out the crucial

decisions pertaining to the design of a knowledge acquisition system. In

www.manaraa.com

6

Section 1.2., the various learning strategies are discussed. Section 1.3.

presents a framework that identifies the attributes of a knowledge

acquisition system and discusses how these attributes are related to the

various learning strategies. Section 1.4. concludes the chapter with a

discussion on the implications of the framework.

1.2. Learning Strategies

Learning is defined in a number of ways. In [Simon 83], Simon

defined learning as

"Learning denotes changes in the system that are adaptive in the

sense that they enable the system to do the same task or tasks drawn from

the same population more efficiently and more effectively the next time."

It is plausible to equate our connotation of "learning" with

"knowledge acquisition" in the context of building systems that facilitate

the acquisition of expertise. Indeed, numerous knowledge acquisition

systems actually leam the domain knowledge from the experts [Cohen and

Feigenbaum 1982]. They perform more than the transfer of expertise

between media but act as individual entities that, like human, enrich their

www.manaraa.com

7

knowledge base through learning. One ambitious goal of Artificial

Intelligence is to build expert systems that are capable to learn on their

own. To this end, the theory of learning, especially machine learning

[Simon 1983],[Carbonell, Michakski, and Mitchell 1983], provides

valuable conceptual foundation and insights to research in this area.

Given our interest in building knowledge acquisition systems, we are

more interested in the learning process itself. Unlike the definitions of

learning which are numerous, there are basically four different

approaches towards the process of learning : rote learning, learning

by deduction, learning by analogy, and learning by induction. Notice that

the complexity of the process and the degree of inference on the part of

the learner increase in this order. In brief, a learning strategy describes

how "new" knowledge is acquired and synthesized by the learner. The

various strategies are discussed below.

1.2.1. Rote Learning

Rote learning refers to the direct implantation of knowledge. It

involves two parties : a student and a teacher. Knowledge is spoon-feed

into the student by the teacher. The role of the student is passive and the

degree of inference on the part of a student is very limited during the

www.manaraa.com

8

learning process. In its strictest form, no modification or rejection of the

implanted knowledge takes place during the process. The major activity

conducted during the acquisition process is to index the acquired

knowledge for later retrieval. Programming is a form of rote learning in

the sense that instructions are provided by the programmer, and the

computer follows whatever it is told to do.

Obviously, the ways knowledge engineers acquire knowledge do not

fall into this category. However in cases where the knowledge engineer

himself is an expert in the application area, rote teaming is the most

direct and effective approach to build expert systems. The long iterative

process of interviewing can then be eliminated. The knowledge engineer

simply transplants his own expertise to a computer in a similar fashion as a

programmer writes a program. This is aided by declarative languages

such as Prolog which allows an expert to state the problem and its

solution method in direct declarative form. In fact, a number of

successful expert systems are built by professionals in their own areas.

1.2.2. Learning by Deduction

Added to the core knowledge acquired with a set of inference rules

results in a strategy called teaming by deduction. The inference rules

www.manaraa.com

9

specify how additional knowledge can be deduced from the core

knowledge during the learning process. No "new" knowledge will be

created using this method. This is because the scope of the knowledge

will be defined once the core knowledge and the set of inference rules

are specified. The inference rules and the initial set of knowledge are

provided by the teacher. Learning a piece of information involves the

invocation of a deduction mechanism which is computationally more

complicate than tire indexing structure used in rote learning. One can

consider the choice between rote learning and deductive learning as one

driven by the tradeoff between space and time. In logical terms, for

instance, the fact that all mammals are animals can be stated as : For all x,

Mammal(x) => Animal(x). In rote learning, to store the fact that human

beings are both mammal and animial necessitates both Mammal(human)

and Animal (human) to be physically resided in the knowledge base. In

deductive learning systems, only the fact Mammal(human) and tire above

statement needed to be stored. The fact Animal(human) can be deduced

by applying the modus ponen inference rule as follows :

Mammal(human)

For all x. Mammal(x) => AnimaKx)

Animal(human)

www.manaraa.com

10

The price to pay for the space gained in deductive systems is the increase in

time spent in performing the deduction as illustrated by the above

example.

1.2.3. Learning by Analogy

To learn by analogy is to create new concepts by transforming and

augmenting existing ones which are similar to the new concepts. A concept

can be a physical object or a problem solving method. The process is

usually broken down into two phases. In the first phase, existing concepts

which bear strong similarity with the new concept are searched for. These

concepts are then mapped to the new concept during the second phase. In

oider to be successful, this approach requires a measure of similarity.

A general definition of this measure is difficult. It depends on the kinds of

concept that we are considering and the context of comparison.

Learning by analogy requires a certain amount of inference on the

part of the learner in the way that a learner can choose the similarity

measure that he will use to acquire knowledge. Suppose a learner thinks

that driving a tank is similar to driving a bulldozer, the direction he will

pursue in learning the concept of a tank will be very different from the

one that he thinks buses and tanks are similar.

www.manaraa.com

11

1.2.4. Learning by Induction

Induction is to infer from specific to general. Usually, the induction

process is driven by a model that specifies the form of relationship that

we want to leam from a collection of examples. Examples of a concept

are analyzed and the results are used to fill in the details of the model. The

role of the teacher is to provide advices in the selection of models and the

criteria of the induction process.

Tire discipline of statistics is the study of inductive inference from a

rigorous mathematical perspective. For instance, a linear regression

model assumes a linear relationship between the given dependent and

independent variables. The induction process is to infer a linear

regression line that best matches the examples. The goodness of fit

measure is also defined in the model (ie. least square) and the actual

value of which depends on the examples in hand.

In acquiring diagnosis rules in medicine, a knowledge engineer

might try to infer symptoms-disease rules from past diagnosis cases. In

essence, he tries to generalize these diagonses so that they can be applied

in future cases. Notice that the induction process is examples driven and

is subject to bias data samples. Also, the learning process depends on the

number and types of examples (ie. positive and negative) available.

www.manaraa.com

12

1.2.5. Factors Affecting the Choice of Learning Strategies

Except for some ad hoc systems, almost all existmg learning

systems fall into one of these categories or their variants. The question

of which one to apply in building a knowledge acquisition system depends

on a number of factors as follows :

1) Problem domain - The new problem domain and its relationships

with others have significant impacts on the efficiency and effectiveness of

the knowledge acquisition process. Three kinds of relationships are

identified.

a) Disjoint problem domains - Two domains are disjoint when they

are very different in their problem contexts. In these situations, there is no

apparent learning strategy that is preferred over others. But in cases when

two domains are identified to be very similar, analogy learning technique

can be applied to learn the new concept from existing ones.

b) Problem domain is covered by other existing domains - If a

problem domain is known to be covered by others that have already been

learned, then the new domain can be learned by imposing conditions on the

covering domain. The covering relationships between concepts can be

represented by a hierarchy tree. By climbing down the hierarchy tree, the

knowledge that are common between the two can then be deduced using

www.manaraa.com

13

the background knowledge provided by the more general one.For

instance, the concept Animal properly contains the concept of Mammal.

Therefore, by imposing conditions on Animal such as

Is-a (x, Mammal) => Is-a (x, Animal), and

Feed-milk (x) => Is-a (x, Mammal),

we can deduce all properties of Mammal from Animals,

c) Problem domain covers other domains - On the other hand, if the

new domain covers some existing domains, then the new domain can be

learned by generalizing the existing ones. Unlike climbing down the

hierarchy tree which is truth preserving, climbing up the hierarchy tree is

false preserving. This is because the generalization process, which is

basically an induction procedure, does not guarantee to produce

knowledge that are valid for the new domain.

2) Problem type - Problems, despite their domains, can be classified

into generic tasks (eg. planning, classification) as proposed in

[Chandrasekaran 1986]. In fact, techniques have been developed to

acquire knowledge for some generic tasks. These techniques might adopt

different learning strategies. Thus, given a problem that can be classified

into a generic task, existing learning strategies for this generic task can be

applied.

www.manaraa.com

14

3) Availability of expertise - In cases when there is an abundance of

expertise or the cost of expertise is low, it is feasible to adopt less

complicate learning strategies such as rote learning and deductive

learning. However, in situations where expertise is scarce and costly, a

learner has to play a more active role in inferring the knowledge from the

limited knowledge sources. Learning by analogy and induction are

resorted to in these situations by transferring the load from the experts to

the learners.

In order to carry out the task of knowledge acquisition in an effective

manner, a system should not be restricted to a single learning strategy.

Indeed, existing systems usually exhibit hybrid learning behavior.

1.3. A Framework of Knowledge Acquisition Systems

Fig. 1.1. depicts a framework of knowledge acquisition systems in

the form of a grid. The vertical dimension represents die various learning

strategies discussed in the previous section. To implement a learning

strategy (or combination of strategies) chosen along this dimension, the

designer of a knowledge acquisition system has to decide on the issues

shown on the horizontal dimension - knowledge representation and

elicitation, learning operator, and learning criteria. Together with the

www.manaraa.com

15

Knovkdge
Leaminc Leeminc Form and
Criteria Operator Elicitation

Rote k amine

Leaminc by
Deduction

Leaminc by
Analogy

Leeminc by
Induction

Fig. 1.1. A Framework of Knowledge Acquisition Systems

www.manaraa.com

16

learning strategy, these correspond to the essential attributes of a

knowledge acquisition system. Our framework does not intend to serve

the purpose of a taxonomy for knowledge acquisition systems. Yet, it

attempts to assist the design of these systems by identifying the essential

features and the crucial design issues.

1.3.1. Knowledge Representation and Elicitation

The issue of knowledge representation is concerned with the

specification of a scheme to state concepts and their relationships. A

number of knowledge representation schema have been proposed [Chang

1973], [Quillian 1968], [Minsky 1975]. Some are designed for specific

application [Shortliffe 1976] whereas others are for common sense

reasoning [Schank 1975], [Minsky 1975], [McCarthy 1968], [Raphael

1968]. One question encountered in designing knowledge acquisition

systems is how die final form of knowledge can affect the knowledge

acquisition process ? Answer to this question is crucial to the selection of

a knowledge acquisition methodology. The question can be broken down

into three more refined questions - 1) What are the different forms of

knowledge ? 2) What are the criteria in selecting knowledge representation

forms? 3) How to elicit knowledge from experts ? Here, a distinction is

www.manaraa.com

17

drawn between the grand process of knowledge acquisition and the more

specific task of knowledge elicitation. The latter is merely concerned with

the articulation of expertise and the provision of tools to facilitate it.

1.3.L1. Knowledge Forms and Selection Criteria

The notion of generic tasks suggested by Chandrasekaran [1983],

[1984], [1986] provides a direction in addressing the first two questions.

In [Chandrasekaran 1986], a generic task is defined as "basic

combinations of knowledge and inference strategies that are powerful

for dealing for certain kinds of tasks". For instance, medical diagnosis

and fault detection can both be categorized as classification tasks. Both of

them involved mapping data (symptoms and defectives) to decisions

(diseases and faults). The two problems, though different in their

domain areas, are structurally similar in their solution methods -

diagnosis rules. Based on the notion of a generic task, it is natural to

have different generic knowledge acquisition methodologies associated

with different generic tasks. The mapping is shown in Fig. 1. 2.

In view of existing systems, there seems to exist evidences to support

the above problem-task-knowledge-acquisition mapping. Here, we focus

on the latter part of the mapping (i.e. between knowledge forms and

www.manaraa.com

Problems Generic Knovkdce
Teaks Foma Acquisition

Techniques

Fig. 1.2. Problem-Task-Form-Acquisition Mapping

www.manaraa.com

19

acquisition techniques). Let us briefly review common classes of

knowledge representation and their learning techniques.

Logic - Mechanical theorem proving [Chang 1973] as the knowledge

processing technique is employed by expert systems using First Order

Logic (FOL). Facts and relationships are stated as logical statements. A

logical statement is a collection of primitive assertions (ie. predicates)

connected by logical operators (eg. AND, OR, NOT). Learning

techniques have been developed to acquire knowledge stated in FOL or

the likes. Sammut described a system MARVIN [Sammut 1981] that

can learn a

concept stated in Prolog like statement by generating instances of the

concept (eg. the geometric configuration of an arch) and check with the

expert whether they are consistent or not. If an instance is too general, it

will be specified until it is consistent with the expert's conclusion. In

[B untine 1986], Buntine discussed an induction algorithm for Horn

Clauses. Given a collection of Horn clauses, the algorithm infers

relationships between these clauses by generalizing the initial set of

clauses . PLANT/DS, a system developed by Michaski and Chilausky

[1980] to acquire soybean disease diagnosis rules, used an extend version

www.manaraa.com

20

of FOL called APC - Annotated Predicate Calculus.In these systems, a

logical statement is a description of a concept or an object Interestingly,

induction is the popular strategy used to leam a concept Examples of a

concept are stated in terms of logical statements. The generic approach is

to generalize these statements to ones that are more descriptive and at

the same time consistent with the given examples. More will be discussed

on learning operators in the next section.

Semantic Network/Frame - Marker propagation is used in semantic

network based knowledge systems in problem solving. Using semantic

network, concepts are represented in the form of graphs with nodes

representing instances, concepts (Color) and attributes (eg. Blue), and

arcs representing relationships (eg. is-a) Frame is a restricted form of

semantic network [Minsky 1975] which has been used for common sense

and default reasoning. This is made possible by the default slots of a

frame. By assuming default values for these slots unless otherwise

specified, generic schema for classes of problem solving methods can be

represented. In [Winston 1975], Winston presented a learning program

that learned the structural descriptions of objects in the block world using

induction technique. Examples of an object are provided. These examples

www.manaraa.com

21

take the form of graphs. Differences and similarities between examples are

derived by matching pairs of graphs. Three kinds of match for both nodes

and links are defined : completely match, partially match, and does-not

match. Information obtained is used to control the search of a general

description of the concept.

Production Rules - Knowledge in the form of IF-THEN rules is another

common knowledge representation scheme. Production rule is similar to

logic in its form of representation. The condition and conclusion of a rule

can be readily translated into two conjunctive statements with the former

implying the latter. Thus, learning techniques associated with logic can

be applied in rule based systems as well. However, there are basic

differences between the two in their inference mechanisms. Instead of

having only one inference mechanism (resolution-refutation), different

inference procedures are adopted in different production systems. For

instance, backward chaining is used in MYCIN [Shortliffe 1976] while a

recognize-act cycle is adopted in OPS5 [Forgy 1981] as the inference

mechanism. Intelligent knowledge acquisiton systems called rule

acquisition systems such as RULEGEN in meta-DENDRAL [Buchanan

www.manaraa.com

22

and Mitchell 1978] and AQ11 [Michalski and Larson 1978] have been built

to acquire rules using the induction approach.

Although not completed, the forms of knowledge discussed above

cover a large portion of existing expert systems which associated with a

wide range of generic tasks (eg. script, classification, planning). The

notion of classifying problems into generic tasks enables us to select a

knowledge form which is the most appropriate for a given problem. Once

a knowledge form is chosen, the acquisition technique follows

accordingly. Thus, it seems plausible to design generic acquisition

procedures for generic tasks. In search of a classification scheme for

generic tasks, however, problems remain in deciding the set of criteria of

the classification scheme. Nevertheless, it provides a framework to guide

knowledge engineers to relate task domains to knowledge forms and to

die selection of acquisition techniques.

I.3.I.2. Knowledge Elicitation - A Psychological Approach

Once a knowledge form is selected, the next step is the eliciting and

coding of expertise. The encoded knowledge might not be in its final form.

This initial chunk of knowledge provides the basis for further refinement

www.manaraa.com

23

and modification. In learning by induciton, this corresponds to the

examples that will be generalized by the induction procedure.

As mentioned in Section 1.1., expert knowledge are difficult to elicit

in situations when they are not subject to conscious introspection. Expert

knowledge usually contain context senstive concepts which are difficult to

articulate in isolation from others or without a proper context. For

instance, an expert in political affairs might not accurately express his

assessments on current U.S./U.S.S.R relation without referring to

previous events. Furthermore, it is easier for the expert to focus on

certain traits of a concept at a time rather than to come up with grand

statements describing it. This is also true in making comparisons between

concepts. Comparing pairs of concepts are more informative than between

a concept and a group of concepts. Despite the advantage of fragmenting

the knowledge domain, problems remain as how to synthesize back the

individual knowledge fragements.

There is an emerging role of Psychology in this endeavor.

Numerous knowledge acquisition systems have been built using

techniques from psychology. These techniques, embracing personal

construct theory, multidimensional scaling, and clustering, are

generally called measurement and scaling techniques.

www.manaraa.com

24

These techniques provide methodologies to measure, compare, and

categorize fuzzy concepts, especially perceptions and physical feelings

which are difficult to articulate by experts in absolute terms. In medical

diagnosis where the feeling of a patient is an important factor in

determining a diagnostic action, these measurement techniques have

been valuable tools to elicit this information. They are suggested in

[Gammack & Young 1984] as means of eliciting knowledge form experts

for the purpose of building expert systems. Let us briefly review these

techniques.

Personal Construct - The personal construct theory proposed by Kelly

[19SS] suggested that each individual seeks to predict and control events by

creating theories of the world. Furthermore, these theories exist in the

form of constructs in each person's mind. Kelly defined a construct as a

bipolar scaled dimension measuring the similarity and contrast between

events. Personal construct theory has been the basis for systems such as

ETS [Boose 1984], [Boose 198S] and AQUINAS [Boose and Bradshaw

1986]. Personal constructs are implemented in the form of repertory

grids in these systems. In its simplest form, a grid consists of two

dimensions - concepts and traits. Entries of a grid are numbers with values

www.manaraa.com

25

range from 1 to 5. Each number corresponds to a relative measure of a

trait associated with a concept. To elicit knowledge from experts using

this technique includes the followings : 1) identify the concepts, 2) identify

the traits that discriminate the concepts in 1), and 3) fill in the entries of

the grid form by 1) and 2).

Multidimensional scaling - Multidimensional scaling technique is a

variant of least square fitting methods. The input data is a symmetric

matrix with each element representing the distance between two concepts.

Depending on the subject to be studied, the distance can be a measure of

similarity or difference. In the context of medical diagnosis, entries of the

distance matrix, for instance, might represent the relative degree of pain

between pairs of heart diseases. The iterative algorithm then attempts

to fit the distance matrix to the required dimensions by minimizing the

stress [Kruskal 1964]. Plots showing the relative positions of concepts can

then be obtained for different pairs of dimensions. The meaning of each

dimension is still subjected to human interpretation. For the purpose of

eliciting knowledge, the technique can be used in both direction. In the

reverse direction, this is done by presenting to an expert a plot of concepts

www.manaraa.com

26

and ask the expert to locate the appropriate position of the new concept on

the map.

Clustering - Clustering technique is generally used as a taxonomical tool

[Johnson 1967]. Input to the cluster procedure is a symmetric distance

matrix and a number specifying the number of clusters to be formed.

The dimensions of the matrix is the same as the the number of data objects.

There are various types of clustering procedure with hierarchical

clustering procedures being the most common one. In an iterative fashion,

a hierarchical procedure searches and merges the closest pair of objects

into one object until the number of objects is reduced to the required

number. The output is a taxonomy of the objects in the form of a tree.

1.3.2. Learning Operators

During the learning process, knowledge is constantly being revised

or generated from existing ones. Learning operators are the means to

alter the descriptions of a concept. These operators are actually functions

that map a concept to another. Conceptually, there is no learning

operator in a learning system based on rote learning because the student is

not allowed to change the description of a concept once told by the

www.manaraa.com

27

teacher. However, for retrieval purposes, the form of representation

might be changed, allowing an effective indexing structure to be

constructed.

In case of a deductive learning system, learning operators correspond

to the inference rules associated with the system. First Order Logic

provides a formal model for many deductive learning systems. It

provides a language to state knowledge and rules of inferences to

make deductions. The knowledge so generated is not "new" but logical

consequence of a deduction process. Modus Ponen together with

universal generalization and existential generalization form the core of

inferences rule in First Order Logic.

To learn by analogy normally requires the determination of a

sequence of operations necessary to map a concept to another. The

mapping process is the computational procedure associated with an

analogy measure. Using the notion of problem space introduced by

Newell and Simon [1972], Carbone 11 [1983] defined analogy learning as

a process of mapping and searching in two spaces - the original problem

space and the analogy transform problem space. A solution to a problem

represents a path in the problem space. To solve a similar problem using

the analogical approach, existing solution of a similar problem is

www.manaraa.com

28

mapped into the analogy transform space as a point representing the

initial state of the transform space. A series of transformation is applied

to the initial state until a new state in the transform space that satisfies the

specification of the new problem is obtained. The new state in the

transform space is then mapped back to the original problem space as a

solution path for the new problem. Under CarboneU's framework, the

transformation operators are the learning operators that perform the

mapping process.

In learning by induction, despite the form of knowledge selected,

there are basically two kinds of operators for systems using induction

techniques, namely, generalization and specialization operators. For

example, the concept Person(John) can be generalized to for all x,

Person(x). On the other hand, by imposing more condition to the

concept, it can be specialized to

For all x, Student(x) => Person(x)

That is, John is a person only if he is also a student. These two kinds of

operators vary in their operations under different knowledge forms. Yet,

they all serve the functions of

1) generalizing a concept

2) specializing a concept

www.manaraa.com

29

In [Michalski 1983], these operators take the form of rewriting rales.

Some of the essential operators are listed below:

In [Winston 1975] semantic network is used to represent structural

objects and their relationships. Examples of a concept such as an arch

is represented by graphs. Generalizations and specializations of concepts

take place by evoking graph operations - deleting, adding, and comparing

links and nodes.

The selection of learning operators depends on 1) the learning

strategy used and 2) the knowledge representation form. Therefore, it

is essential to define these two attributes of a knowledge acquisition

system before the issue of learning operators can be addressed.

4. Climbing generalization tree

Generalization Operators

1. Dropping condition

2. Adding alternative

3. Extending reference

Specialization Operators

Adding condition

Dropping alternative

Closing reference

Climbing specialization tree

www.manaraa.com

30

1.3.3. Learning Criteria

Learning criteria determine the goal of a learning process. Some of

these criteria might be in conflict with one another and a compromise is

usually required to resolve this. In rote learning systems, the obvious

criterion is that the knowledge acquired is identical to the ones supplied

by the teacher. The student simply makes sure that all instructions are

received and properly indexed.

In the case of deductive systems, the basic criteria are consistency

and completeness. In logical terms, consistency means, given an

interpretation, all true statements can be deducted using the inference

rules. Completeness refers to the ability to find a contradiction if one

exists. Ideally in learning by deduction, new knowledge acquired from

experts or generated by the system itself should satisfy these two criteria.

Yet, the two criteria are seldom satisfied in practice deal to limited

computation resources.

In systems that leam by analogy, learning criterion is based on die

similarity measure defined by the system. The analogy measure is

expressed as a function that map two concepts to a real number as

follow:

www.manaraa.com

31

Analogy: Dom(Concept)XDom(Concept) -> R,

where Dom(Concept) denotes the domain of a concept.

The simplest example of an analogy is the function absolute

difference (ie. II) of two real numbers. Given the definition is a

topological one, for example, 3 is more closer to 4 than S. That is, 13-41 <

13-51. For concepts that are multidimensional - one that can be described by

a set of features. Tversky [1977] presented a similarity measure which

defined on the feature set of a concept. The degree of similarity between

two concepts increases with the size of the intersection of their sets and

decreases with the size of the intersection of the two complement sets.

For concepts that are identified by their structures, the measure of analogy

is defined on the sequence of structural transformations required to

transform a concept to another. Each transformation is given a weight (or

cost). By adding up all the weights associated with a transformation

sequence, one obtains an index indicating the similarity between the two

concepts. One example is the measuring of distance of two sequences of

symbols [Levenshtein 1966]. These measures are concerned with the

apparent structural differences between two concepts.

For more complicate knowledge structures, Gentner in [1980], [1983]

described a mapping process that transform a descriptive structure

www.manaraa.com

32

from one domain (base) to another (target). Predicates and relations are

systematically deleted and added to the base structure to match with the

target structure. The theory of structural mapping is the basis of CARL

[Burstein 1983]. CARL is a learning system designed to learn the

semantics of assignment statements for the BASIC programming

language. Concepts such as PUT-IN-BOX are stated in frame like

structures. During the learning process, CARL draws on analogy

between variables in a computer and objects in a box. The success of

analogical learning depends heavily on the choice of the analogy measure

[Winston 1980]. However , a general measure of analogy is difficult to

determine. This is especially true when tire meaning of analogy between

two concepts varies under different perceptions and situations.

Angluin and Smith [1983] surveyed different induction methods

and criteria from both the practical and theoretical standpoints. In

general, there are two fundamental criteria pertaining to learning by

induction namely, simplicity and goodness of fit.

Simplicity - In learning a concept, a simple yet powerful description is

most desired. Simplicity can be interpreted as the general applicability of a

concept description. A very specific description might find itself too

www.manaraa.com

33

limited to be applied in different settings. Furthermore, human tend to

form stereotype of concepts for the purposes of efficient storage and

prediction. An induction procedure, which is designed to replace

knowledge engineers in acquiring expert knowledge, should consider this

cognitive behavior as a primary criterion.

Goodness of fit - A simple description, however, might be too broad to

apply in other situations. In order to be useful, specific instances of a

concept cannot be generalized too much. To restrict the degree of

generalization, examples of a concept is provided to guide the

generalization process in such a way that the final concept description

obtained should be consistent with the examples provided.

These two criteria exist in various forms in different learning

systems. In [Larson and Michalski 1977],[Hayes-Roth 1976], they take

the form of maximally-specific conjunctive generalizations (MSC-

generalizations). A conjunctive generalization is a description of a

concept obtained by forming the conjunction of a group of primitive

statements (eg. predicates). A maximally-specific conjunctive

www.manaraa.com

34

generalization is the most detailed description that holds true for of all

examples of the concept.

However, MSC-generalization is primarily used to generate

description for a set of positive examples. Only positive traits of the

examples are taken into account, making the MSC-generalization too

general to apply in other circumstances. To overcome this, negative

examples of a concept are also used to restrict the degree of

generalization. When negative examples are used, the criteria take the

form of two parameters which specify the number of positive and negative

examples covered and rejected by a rule [Tam, Holsapple and Whinston

1987]. A special kind of negative examples called Near-Miss examples is

suggested by Winston [1975] to control tire generalization process. A

Near-Miss example is a negative example that differs in one attribute

from the concept. Near-Miss examples offer valuable information in

identifying a concept. Yet in general, Near-Miss examples are difficult to

obtain.

1.4. Conclusion

In this chapter, we have presented a framework for building

knowledge acquisition systems. The interplay between learning strategy,

www.manaraa.com

35

knowledge form, learning operator, learning criteria, and their

influencing factors arc summarized in Fig. 1.3. Each circle represents an

attribute which has to be determined during the design process.

Squares denote factors affecting the decisions pertaining to an attribute.

Arrows representing dependence relationship. Implications

derived from

Fig. 1.3. can serve as guidelines in designing a knowledge acquisition

system by

1) identifying the essential attributes of a knowledge acquisition system

- We have identified four attributes : learning strategy, knowledge

representation and elicitation, learning operator, and learning criteria,

attributes.

2) identifying the intimate relationships between these attributes and the

factors pertaining to the application domain - There are a number of

factors affecting the choice of each attribute. As shown in Fig. 1.3., the

choice of a learning strategy depends on three factors : problem domain,

problem type, and availability of expertise. The notion of generic tasks

enables us to select a proper knowledge form by classifying problems into

generic tasks and to map these tasks to their representation forms. For

knowledge that is difficult to elicit, measurement and scaling techniques

www.manaraa.com

36

Domain
Hierarchy

Fig. 1.3. Dependence Relationship between the Four Attributes and their
Influencing Factors

www.manaraa.com

37

are suggested. As soon as a learning strategy (or combination of strategies)

and a knowledge form is determined, the definitions of learning operators

and teaming criteria follow accordingly.

3) providing a framework for the design procedure - The following

outlines a design procedure as implied by Fig. 1.3. First, the problem

domain and types are identified. Next , the new problem domain is

compared with existing knowledge domains to discover the various

relationships (see Section 1.2.). Information obtained is used to choose a

teaming strategy. Given a generic task classification scheme, a proper

knowledge form is selected. At this point, both the attributes of knowledge

representation and teaming strategy is defined. The next step is to elicit

expertise and encoded them in the knowledge form selected. To elicit and

ecode this knowledge might require application of phychological

techniques in situations where expertise is difficult to articulate. Finally,

the issue of learning operators and learning criteria are defined. As

mentioned in Section 1.3., these two attributes depends on the learning

strategies selected.

www.manaraa.com

38

CHAPTER 2

KNOWLEDGE REFINEMENT OF EXPERT SYSTEMS

2.1. Introduction

The conventional way of organizing an expert system as depicted in

Fig.2.1. does not provide adequate interfacing between the knowledge

acquisition system and the other components of an expert system.

Knowledge acquisition and refinement are mostly manual tasks that are

performed exogeneous of the expert system. The revised knowledge is

then transplanted back to the knowledge base. The process is laborious and

renders it very inefficient and uneconomical to apply expert systems in

rapid changing domains.

In general, the term "knowledge acquisition" refers to the process of

collecting domain specific knowledge from human experts. The various

techniques to acquire knowledge have been discussed in the previous

chapter While knowledge acquisition is a "one shoot" process, knowledge

refinement is a continuous process which is performed during the entire

life-span of an expert system. In fact, the life-span of an expert system is

directly determined by the validity of its knowledge base, which in turn is

www.manaraa.com

39

User

Fig. 2.1. Conventional Organization of an Expert System

www.manaraa.com

40

determined by the extent knowledge is refined to match up with the

changing domain. Knowledge refinement is a major issue in die study of

expert system and is of great concern to both practitioners and academics.

However, not much work have been done so far in this area.

2.2. Knowledge Refinement

The principle of knowledge acquisition as discussed in Chapter 1 is

generalized to knowledge refinement. We define the process of knowledge

refinement as a sequence of knowledge acquisition tasks with each

triggered by an updating signal generated by the user or by the expert

system itself. The idea of updating signals is to alert the expert system that

the validity of the knowledge base has fallen below a threshold level and

need to be revised.

2.2.1. A Measure of Knowledge Base Validity

The validity of knowledge base is difficult to measure on an absolute

basis because expert system is basically a program that imitate the

reasoning process of human experts. The best benchmark of the

performance of an expert system is that of human experts. The validity of

a knowledge base could then be mesaurcd by comparing the conclusions

www.manaraa.com

41

generated by the expert system with those proposed by human experts in

solving identical problems. For instance in medical diagnosis, diagnostic

decisions of the expert system and the physicians can be compared to

identify any discrepancy between the two parties. If die conclusions are so

far off, then the knowledge base of the expert system is concluded to be

invalid and has to be revised.

Using human experts as the oracles, we can provide a benchmark in

assessing the performance of an expert system. Since conclusions are

deduced from the knowledge base, the performance of an expert system

could be determined by the validity of the stored knowledge. This permits

us to use the performance measure to assess indirectly tire validity of the

knowledge base. However in using the same measure to evaluate

performance and knowledge base validity, we have implicitly made the

assumption that the inference mechanism of the inference engine does not

deviate much from human experts. This assumption is justified in the sense

that the way inference is made does not change as drastically as the

knowledge itself in most situations. Yet we should bear in mind that there

is still a chance that the declining performance of an expert system is not

due to an invalid knowledge base but rather to an invalid inference

mechanism.

www.manaraa.com

42

2.2.2. Updating Signals

Updating signals are generated internally by the expert system or on

request by users. Updating requests are generated internally when the

performance of an expert system has fallen below a threshold level. To

implement this, we need a log of conclusions generated by the expert

system and audit them periodically. Depending on the degree of accuracy

required, all elements in the log is used or only a portion of which is used

in performance estimation. In the latter case, we need to determine the

sample size and the acceptance level of the sample.

Expert systems organized in this way are self-controlled systems that

adjust themselves to changing domains by responding to feedbacks from

users or signals generated internally (Fig. 2.2.). The performance of an

expert system is the control parameter of the entire system. It sets forth the

criterion of revision and its value is determined by the log of previous

conclusions.

The knowledge base can also be updated on request by users. This

happenr when 1) a user wants to change the threshold value of the

performance measure, or 2) a user want to add or delete knowledge from

the knowledge base. In both cases, the validity of the knowledge base may

www.manaraa.com

43

Fig. 2.2. Knowledge Refinement using Updating Signals

www.manaraa.com

44

no longer in compliance with the given threshold value and need to be

updated

2.3. An Architecture to Integrate Knowledge Refinement in

Expert Systems

A generic architecture that support knowledge refinement is shown in

Fig. 2.3. It consists of five functional components : 1) interface, 2)

inference engine, 3) knowledge base, 4) knowledge refiner, and 5)

decision log. The first three are the basic components of an expert system.

The knowledge refiner and decision log are additional components that

provide die mechanism and the information to refine the knowledge base.

The interface provides input/output media between users and the

other components. It should provide user friendly interface that are easy to

comprehend. It can be streamlined to certain group of end users and may

take the form of icons, queries, natural language, graphics, image

recognition, or real time signals from other devices.

The reasoning function is performed by the inference engine. It is

implemented as a control procedure that determines how knowledge is

combined and processed. The reasoning process can be forward or

backward. In a forward reasoning process, knowledge is deduced from a

www.manaraa.com

45

Fig. 2.3. An Expert System Architecture with Knowledge Refinement

www.manaraa.com

46

collection of known facts. In backward reasoning, the process is reversed:

it starts from a hypothesis and check whether it can be validated from the

existing knowledge base. In a rale based system, they are commonly

referred to as forward and backward chaining respectively.

In a knowledge base, there are many forms of knowledge including

procedural knowledge, reasoning knowledge, presentation knowledge,

and model knowledge. This is the reasoning knowledge that distincts a

knowledge base from a conventional database system. Thus, the proposed

architecture is primarily concerned with reasoning knowledge in the

context of knowledge refinement.

The function of the decision log is to keep track of the changing

reasoning process of human experts. Decisions generated by an expert

system is stored in the log. By doing so, an expert system can evaluate its

performance in terms of the number of contradictory decisions between

human experts and the expert system. Decisions are recorded in the form

of reasoning chain. A reasoning chain is the sequence of inference steps

that lead to a decision. Entries in the decision log are audited periodically

by experts to check for contradictory decisions. When a decision is

audited, the entire reasoning chain of the decision is examined. Conflicting

/

www.manaraa.com

47

decisions along the reasoning chain are identified and updating signals are

then generated accordingly to refine the knowledge base.

Once die number of contradictory decisions in the decision log has

fallen below a tolerance (threshold) level, an updating signal will be

generated to inform the knowledge refiner to revise the knowledge base.

The function of a knowledge refiner is to update the knowlege base using

the knowledge acquisition techniques discussed in the previous chapter.

The input of the knowledge refiner are the conflicting decisions and the

existing knowledge base. The output would be a new knowledge base that

satisfies the tolerance level.

Like the other components, the knowledge refiner and the decision

log are permanent integrated components of an expert system and operate

on a continuous basis.

2.4. Concluding Remarks

We have extended the conventional architecture of expert system to

incorporate a mechanism of knowledge refinement. Two functional

components , decision log and knowledge refiner, are added to provide the

information and mechanism to refine the knowlege base respectively. In

the next two chapters, task specific reasoning systems are studied under

ft

www.manaraa.com

48

this architectural framework. The two tasks are pattern recognition and

classification. Furthermore, these two tasks are applied to the domain of

security trading. Our intent is not to study security trading per sec but

rather to provide a realistic setting to demonstrate the applicability of the

proposed architectural framework in different task domains.

www.manaraa.com

49

CHAPTER3

PRICE MOVEMENT PATTERNS REPRESENTATION,

ACQUISITION, AND REFINEMENT

3.1. Introduction

In this chapter, we will study the task of pattern recognition in the

context of security trading. We will primarily focused on the following

four issues : 1) Pattern knowledge representation, 2) Pattern recognition

mechanism, 3) Noisy pattern discrimination, and 4) Pattern knowledge

acquisition and refinement. Before we precede, let's briefly review the

practice of price movement pattern recognition, commonly called

technical analysis in the security industry.

3.1.1. Background

In formulating a trading strategy, a trader may study the

movements of security prices in the hope of discovering trends and

patterns on which he can capitalize. Numerous techniques have been

proposed to aid traders in this aspect. They range from simple high/low

point charts to complex trend-following programs that require

www.manaraa.com

50

considerable computing resources. These techniques are collectively

referred to as technical analysis. The practice of technical analysis is not

uncommon, despite its lack of theoretical justification. The common

denominator of these techniques is their assumption of the validity of

historic information in predicting price movements. This is contrary to

the Maiket Efficiency Hypothesis which contends that movements of

security prices follow a random process. Yet, it does not obscure the fact

that technical analysis is used daily by traders across a broad range of

securities. Evidently and practically, it serves the function of decision

support rather than "fortune teller" as most theorists perceive.

Automation of technical analysis is at the present limited to

trend-following programs. These programs use statistical techniques such

as moving average and time series to forecast future prices according to

past trends, alerting the trader when the actual price movement deviates

from the forecasted trend. Trend following is limited in the sense that it

can only detect deviations from the trend. Except for some simple ones, it

is not capable of identifying more complex trends. More complicated

patterns teg. valley, head and shoulder, Elliot wave e tc .) still have to be

"eyeballed" by traders. In general, technical analysis is primarily

concerned with recognizing patterns of price movements. In addition to

I;

www.manaraa.com

51

the basic set of patterns (e.g. head and shoulder, valley) commonly used

in technical analysis, a trader might add his own set of patterns.

Under our refined view of technical analysis, which is pattern

recognition, the task of automating technical analysis is reduced to

provide the followings:

1) Pattern representation form

2) Mechanism to recognize and discriminate different patterns

3) Mechanism to handle noisy patterns

4) Techniques to acquire and refine pattern knowledge

In this chapter, formal language theory is applied to address these

four issues. The rest of the chapter is organized as follows : Section 3.2.

reviews the application of statistical discriminant analysis in pattern

recognition and discusses its drawbacks. In Section 3.3., formal language

is used to describe price movement patterns, and the task of pattern

recognition is reduced to parsing a sentence with a set of phrase structure

grammars. Section 3.4. will address the issue of pattern knowledge

acquisition and refinement from an architectural perspective based on

Chapter 2.

h

www.manaraa.com

52

3.2. Statistical Pattern Recognition

One approach to the task of pattern recognition is statistical

discriminant analysis. A pattern such as the one in Fig. 3.1. is

segmented into n-1 identical divisions. Thus, die continuous time span of

a pattern is characterized by n discrete time spots. A pattern is

represented by an n-dimensional vector P = (h(t1),h(t2),...Jh(tn))T where

h(tj) is the price of the security at time t*. The time interval between

consecutive time spots is determined by the trader and it varies according

to the time frame associated with a trading strategy. For instance, an

arbitrage strategy in foreign exchange might require a very short time

interval, say fractions of a second. Given a specific time frame, different

patterns are represented by different pattern vectors. Price patterns are

points in an n-dimensional Euclidean space called the pattern space. The

task of pattern recognition is to partition the Rn pattern space. The

objective is to group similar patterns into the same partition and to

provide decision rules that classify patterns into different pattern classes.

These d< nsion rules take the form of discriminant functions. For each

partition which represents all the possible forms of a pattern (e.g. valley

), it is associated with a discriminant function D. D is a function

www.manaraa.com

53

|dM

Fig. 3.1. Price Movement Segmentation

www.manaraa.com

54

which maps Rn to R. Suppose the pattern space is divided

into M partitions G^Gj.-.G,* , with each corresponding to a pattern class.

There will be M discriminant functions D1(D2, . . , DM. To recognize a

price pattern, say P, the M discriminant functions are applied to Vp -

the pattern vector representing P. The values of D,(Vp), D2(Vp),..

DM(Vp) are then compared with each other to determine to which partition

Vp belongs. Suppose Dit 1 £ i £ M represents the function that measures
i

how likely Vp is an element of G j; the decision rule might be defined as

follows:

Vp ~> Gk such that Dk(Vp) * max {D1(Vp),D2(Vp),...DM(Vp)}, 1 £ k £ M

If k assumes more than one value, then one pattern class is arbitrarily

selected and Vp is assigned to it. This approach to pattern recognition is

also called tire decision theoretic approach.

In general, the task is composed of two procedures, namely

classifier construction and evaluation. Classifier construction is concerned

with the construction of pattern boundaries which are based on a set of

training samples. The partitions so constructed are evaluated by another

www.manaraa.com

55

set of pattern samples to estimate how well the classifier performs in

discriminating different patterns.

3.2.1. Classifier Construction

Given M classes of patterns, die entries of the training set are samples

of each of the M patterns. For instance, a head and shoulder pattern might

exist in slightly different forms as shown in Fig. 3.2. The function of this

procedure is to consider a number of different head and shoulder

patterns and to provide a compact form that adequately represents the

entire class of head and shoulder patterns under a particular time frame.

This is then repeated for other pattern classes. Obviously, the result

depends very much on how fairly the sample represents the actual

pattern. Bias samples will certainly degrade the accuracy of the

procedure, and the result obtained will be misleading.

Statistical techniques come into play by assuming each pattern class is

associated with a probability distribution. The most common approach is

to assume that elements of a pattern class are distributed normally in Rn.

Consider the case of discriminating M pattems.The first step of

constructing a classifier is to estimate the parameters of the

h

www.manaraa.com

56

*1 • • • «£ • • * * i i a *

Fig. 3.2. Two Head and Shoulder Patterns in the Pattern Space

www.manaraa.com

57

multivariate normal distributions, N(p.j J)j), N(î2,Z2),...N(jxm,Zm). The

sample patterns in the training set are used for the estimation.

Using die sample mean vectors and sample covariance

matrices one obtains unbiased estimates of the parameters.

The next step is to construct boundaries that separate these disributions.

The construction of boundaries is driven by some predefined discriminant

criteria. These criteria might be to minimize the maximum error,

minimize total error, and to maximize interpartition distances etc.

Let us consider one that minimizes the expected cost of

misclassification. The expected cost of misclassification, denoted by ECM,

is defined as follows:

M M

ECM = Z p ,(Z P (jl i)) , inwhich (3-1)
i=l j=l,

j*

Pi - the prior probability of the i pattern class,

P(j I i) = probability of misclassifying a pattern of the i class to the j class.

The objective is to determine partitions Gj,G2,..Gm in Rn in such a way that

www.manaraa.com

58

(3-1) is minimized. It can been proved that minimizing (3-1) is defined by

allocating x e RB to Gk, k *1,..,M, for which

M

XMOO. (3-2)
i*l,
h4

fj(x) = probabality function of Gj

is smallest. (3-2) is smallest when the omitted term, p ^ x) is the largest.

Thus, we have the following decision rale:

x -> G k if pkfk(x) > pjfi(x), Me (3-3)

Since pkfk(x) and pjfj(x) are always positive, (3-3) is equivalent to (3-4).

x ~> Gk if ln(pkfk(x)) > ln(pjfi(x)), Me , 1 £ i M (3-4)

Here, f|(x) is a multivariate normal probability function. That is,

fj(x) = (2ji)->/2 I r { I exfK-fx-n^TXj'fx-H,)^) , l £ i £ M (3-5)

We then have the following decision rale :

x --> Gk if Dk(x) > Dj(k), i?4c, (3-6)

where D,,D2,..-DM are the discriminant functions obtained by substituting

(3-5) in (3-4).

www.manaraa.com

59

Dj(x) * -(In I Ej l)/2 - (x -^ T S j-K x -^ + ln Pi, 1=1,2,...M (3-7)

Estimates of Pi, p,', i=l,..M, can be obtained by counting the number of

patterns belonging to 0 { from the pooled Pattem samPle set. Unbiased

estimates of £ i and ji|t 1 £ i £ M, can be obtained from samPle mean

vectors Pi' and samPle covariance matrices £■', 1 ^ i ^ M. Using these

estimates, we obtain the estimated discriminant functions D /, D2' , ... DM’

as follows:

D|'(x) = -(In I Zj' l)/2 - (x-jij'jTEj-Kx-jij'yi + In Pi' , 1=1,2,...M (3-8)

The output of this optimization procedure consists of hyperplanes

separating the different pattem classes in the pattem space. These

hyperplanes are defined by the estimated discriminant functions which are

linear.

3.2.2. Evaluating Classifier

The discriminant functions so derived have to be evaluated with

another st of sample patterns. There are a number of techniques for

testing the discriminating capability of these functions. One commonly

used technique is to divide the training sample and testing sample into

www.manaraa.com

60

equal halves. Performance of a classifier is calculated as a ratio of the

number of misclassifications to the size of the testing sample. Quite

obviously, the larger the size of the training sample, the less likely the

discriminating functions will be distorted by bias sample patterns. Using

the training sample for testing will probably underestimate classification

error and should be avoided. Given a fixed number of sample patterns for

each pattern class, tradeoffs have to be made between the size of the

training sample and that of die testing sample.

A general procedure for constructing a pattern classifier using

statistical techniques is depicted in Fig. 3.3. This approach, however, falls

short in discriminating structural identical patterns under different time

frames. Consider the two valleys shown in Fig. 3.4. They share the same

structural form but only differ in their time frames. Note that our

previous discussions on pattern classification assume that all patterns have

the same time frame. One solution to this problem is to extend the time

frame of the smaller pattern to that of the larger one. The process is called

normalization of patterns. The general procedure is then applied to the

normalized pattern samples. The classification error so obtained might be

very large because the two pattern vectors might locate far from each

other in the pattern space. A partition defined to contain these two vectors

h

www.manaraa.com

61

... -Sample Pattern Sets
I of m patterns

no. of correct classifications
no. of misclasslfJcations

Construct Discriminant
Functions

Divide each
Sample Set

Into
1. Ttaininc Sample
2. Testinc Sample

Estimate M Multivariate
Normal Distributions

Testinc Classifier

Fig. 3.3. Procedure for Constructing Pattern Classifiers
Using Statistical Discriminant Analysis

www.manaraa.com

62

Fig. 3.4. Two Valleys with Different Time Frames

www.manaraa.com

63

will probably be so large that a number of other patterns will also be

included, thus increasing the error rate of die classifier. To overcome this,

structural identical patterns under different time frames are characterized

by partitions in different pattern spaces. In other words, pattern spaces of

different dimensions are constructed for structurally identical patterns

with different time frames. Consequently, the decision rule is stated as

"If a pattern vector falls within either of these partitions then conclude Vp

belongs to this pattern."

This approach drastically increases the number of pattern partitions

and becomes very inefficient when the number of time frames under

consideration is large. To automate the task of pattern recognition

effectively, we need a compact way to represent structurally identical

patterns. In other words, we need constructs to state a pattern which is

independent of the associated time frame. In the next section, this issue is

addressed from the perspective of formal language theory.

www.manaraa.com

64

3.3. Linguistic Pattern Recognition

The linguistic approach to pattern recognition in this section employs

lingusitic techniques of formal language theory in stating and recognizing

different patterns. Formal language theory is the study of the mathematical

structure of sets of strings [Aho and Ullman 1968]. The initial

investigation of mathematical lingusitics aimed at trying to understand the

basic properties of natural languages [Chomsky 1936]. In general, a

language is defined as the set of sentences that can be derived from a set of

symbols and a collection of rewriting rules (or grammar rules). The

grammar rules determine how symbols are combined to form sentences of

the language. The number of sentences so generated may be finite or

infinite. Thus, mathematical lingusitics is a powerful tool to describe a

large number of phenomena or patterns by using a finite set of symbols

and a relatively small number of grammar rules. In fact, it has been

applied in a number of engineering domains such as fingerprint

identification [Moayer and Fu 1976], image analysis [Gips 1974),

[Rosen celd 1979], [You and Fu 1979], and character recognition [Stallings

1979], to name a few.

The lingusitic approach presented here differs from its statistical

counterpart in the way structural information of a pattern is used in the

!>

www.manaraa.com

65

recognition process. In this approach, structural information of a pattern

is organized in the form of a hierarchy. In essense, a pattern is derived

hierarchically from a predefined set of primitive patterns. The derivation

process is governed by a collection of grammar rules.

To illustrate this, the class of valleys can be described by a language

with its grammar rules shown below.

<valley> —> <uptrendxdowntrend>

<valley> —> <downtrendxvalleyxuptrend>

<uptrend> —> /

<downtrend> —> \

Two valleys with different sizes and their derivations are shown in

Fig.3.5.

In this paper, formal language theory is applied to the study of

technical analysis. Different price movement patterns are described by

different languages. Each class of patterns , say valley, is associated with a

pattern language. Sentences belonging to such a language represent all

possible valley patterns which are independent of the underlying time

frames. As will be shown later, the recognition process is reduced to

/

www.manaraa.com

66

<V«Itoy>

<dovntrendxVaIkyxTiptx»iid>

<do vntrendxdo vntrendx V «Jkyxaptr*ndxuptrend>

<dovntnsnd> <do vn tnndxdo vnt»nd><tiptm>dxuptniidxiiptrend>
I I t i l l
\ \ \ I I I

<V«lky>

<dovntnndxVtUiyxuptnnd>

<dovntrBndxdovntx»rvd><upti«nd><upTrend>

J i l l
' \ / /

Fig. 3.5. Two Valley Sentences with Different Time Frames
and Their Derivations Trees

www.manaraa.com

67

parsing a pattern (coded as a sentence) with respect to the different pattern

languages.

3.3.1. Representing Patterns as Languages

The langauge we use to describe a pattern belongs to the class of

language that can be generated by a phrase structure grammar [Aho and

Ullman 1968]. A phrase structure grammar is defined as a four tuple G,

where

G = < V-p VN,P,S>, in which

1. VN and VT are the nonterminal and terminal vocabularies of G,

respectively.

2. VN u VT constitutes the total vocabulary set V of G and VN n VT = 0.

3. P is a finite set of grammar rules denoted by a --> p. where a and p are

strings over V with a containing at least one symbol of VN.

4. S is the start symbol of a sentence and S e VN.

The language generated by G is defined as L(G) = { x l x e VT* such

thatS=> x}.L(G) is called the phrase structure language associated with

G. VT* is the set of fmite-length strings of symbols in VT, including X, the

symbol with zero length. The length of a sentence denoted by 1£ I is the

it

www.manaraa.com

68

number of symbols in S =>* x means that x is derived by systematically

rewriting S using die grammar rules in P.

A class of patterns, say valley, is represented by a phrase structure

language. Elements of the language correspond to the different valley

patterns. One of the advantages of using this technique over statistical

pattern recognition is that it can represent an infinite number of

structurally identical patterns in a very compact form. To state a pattern

class is to define the four attributes VN, VT, P, and S of G.

3.3.2. Primitive Price Patterns

Primitive price patterns are the most basic components of a pattern.

They correspond to the terminal symbols in VT. In our previous example

of a Valley, { \ , / } are the primitive price patterns we use to describe the

class of valley patterns. The meaning of each symbol is provided by the

trader. For example, 'V might denote that the asking price of IBM stock is

down by $0.1 in the last minute. Or it might mean the ¥/$ exchange rate is

down by 0.5 in the last second. The meaning of each symbol in VT depends

on the trading activity engaged in, which in turn determines the descriptive

ft

www.manaraa.com

69

power of the language. The descriptive power of VTis determined by the

following:

1) Time interval of a symbol - Since a sentence is composed of symbols

concatenating in a sequence, it describes a series of events occuring in

discrete time intervals. In order to approximate the continuous movement

of prices, we have to decide on the time granularity of a primitive pattern.

A better approximation can be obtained by reducing the time interval

associated with a primitive pattern, making the pattern recognition

mechanism more sensitive to short term price fluctuations. However,

primitive patterns which span short time intervals may very likely

incorporate undesired noises into a pattern, thus reducing the noise

immunity of the recognition mechanism.

2) Number of primitive price patterns — Given a specific time granularity,

a richer set of primitive price patterns is more descriptive, providing a

better approximation to the actual price movement. In Fig. 3.6b., a richer

set of primitive patterns is used, giving a better approximation to the actual

price movement than Fig. 3.6a. which uses a subset of the former.

www.manaraa.com

70

www.manaraa.com

71

3.3.3. Intermediate Price Patterns

Intermediate price patterns are patterns that are built up from

primitive price patterns and other intermediate patterns. They represent

the sub-patterns of a pattern, corresponding to VN in G. For instance in

our previous example, <downtrend> and <uptrend> are intermediate

price patterns. They characterize the two sides of a valley. These patterns

will not appear in the final pattern since all symbols in the final pattern are

primitive patterns. They are used primarily as intermediate structures to

construct the final patterns.

3.3.4. Grammar Rules Construction

The previous sections discussed the definition of VT ,VN

respectively.

How the various primitive and intermediate price patterns are combined to

form more complex patterns are defined by a set of grammar rules, P.

These grammar rules specify how patterns and sub-patterns are

construct d.

According to Chomsky’s hierarchy [1959a, 1959b] (Fig. 3.7.), phrase

L

www.manaraa.com

72

Unrestricted Onmmir

Context Sensitive Grammar

Context Free Oremmar

Finite State Oremmar

Fig.3.7. Chomsky’s Hierarchy

www.manaraa.com

73

structure grammar can be classified into four different classes according

to the form of the grammar rules.

1) Unrestricted grammar - there is no restriction on the grammar rules,

which might have any strings on either the right or the left of — >.

2) Context-Sensitive grammar - grammar rules are restricted to the form

where A e VN, ^ , ^ , B e V*, B * K and I I <, I ^ B ^ j I . That is, A

can be replaced only in tire context of

3) Context-Free grammar - grammar mles are of the form

A~>B

where A e VN and B £ V*. and B * A.. Note that a grammar rule of such a

form allows the nonterminal A to be replaced by the string B

independently of tire context in which A appears.

4) Finite-State grammar - The grammar rules are of the form

A —>aB or A —>b

where A, B e VN and a, b £ VT.

www.manaraa.com

74

The question of which class of grammar to apply in describing a

pattern class can be considered as one driven by the tradeoff between

descriptive power and recognition efficiency. In terms of descriptive

power, Unrestricted grammar is the most powerful amongst others. Since

it properly contains other classes of grammars, it can describe patterns that

cannot be described by other classes. However, determining whether a

sentence is generated by an Unrestricted grammar is in general

undecidable, not to say efficiency. On the other hand, sentences generated

by a Finite-State grammar are easy to recognize. But its descriptive power

is limited. Context-Sensitive and Context-Free grammars are

intermediates which are recognizable and offer considerable descriptive

power. In this thesis, we will focus solely on pattern classes that can be

described by Context-Free grammars.

Using V j = {\ , / }, a number of pattern classes are defined below. As

mentioned earlier, the semantics of ’V and "/” are defined by the trader.

Notice that all these pattern classes are stated in Context-Free grammar.

Peak

By inverting a valley, one obtains a peak. A peak is defined as a pattern

with an up trend followed by a down trend (Fig. 3.8a. and 3.8b.).

ft

www.manaraa.com

75

<Peak> --> <uptrcndxdowntrend>

<Peak> --> <uptrcndxPcakxdowntrend>

<downtrend> --> \

<uptrcnd> —> /

Zigzag

Using the pattern classes <Peak> and <Valley>, a pattern class called

<Zigzag> which is defined as a sequence of peaks and valleys is shown

below. Notice that Fig. 3.9a. and Fig. 3.9b. are not only different in their

forms but also in their time frames. Classifier constructed using statistical

discriminant analysis will very likely classify these two patterns into two

different classes. Yet, they are generated by the same grammar, Zigzag.

<Zigzag> --> <PeakxValley>

<Zigzag> --> <ValleyxPeak>

<Zigzag> --> <PeakxZigzag>

<Zigzaj> —> <ValleyxZigzag>

<Valley> and <Peak> as described above.

www.manaraa.com

76

UjLSH

An up-8upport pattern is defined as a valley bounded by at least three V

symbols cm both sides. (Fig. 3.10a. and Fig. 3.10b.)

<Up-support> --> <up> <Valleyxup>

<up> —> <uptrendxup>

<up> ~> <uptrendxuptrend><uptrend>

<uptrend> and <Valley> as defined above.

Pown-supgQit

Similarily, a down-support pattern is defined below, consisting of a peak

with both sides bounded by at least three ' \ " symbols. (Fig. 3.1 la. and Fig.

3.11b.)

<Down-support> --> <downxPeakxdown>

<down> --> <downtrendxdown>

<dowrt --> <Downtrendxdowntrendxdowntrend>

<downtrend> and <Peak> as described above.

www.manaraa.com

77

/
\

*
/

/
/

\
\

V

/
\

/

•a

00
cn
eb• mm
U.

\
\

\

>

<
*

/
/

\
/

/
\

/

\
/

\
\

\
/

/ *

\
\

\

/

<
/

*
/

/
/

\
/

\

oo

<
o\
rn
eb
f£

www.manaraa.com

78

\
\

\
\

\

/
\

\
/

\
\

\ *
\

\

S.
COfD.

3
C
<

m
eb

\
\

\

<
\

\

/

<
/

/
/

/

*
/

/
/

\

/
\
/

/
/

/
r

/
/

C

o*
V)i

a
m
eb
E

/
/

www.manaraa.com

79

3.3.5 Recognizing Patterns

We have discussed how structural identical patterns can be concisely

represented by a phrase structure grammar. We now turn to the problem

of recognizing price movement patterns which is stated as follows :

Input: (1) a price pattern coded as a sentence

(2) a collection of pattern classes L(Gj),... L(GM)

Output: a decision showing which class the price pattern belongs to

In formal langauge, this is called the parsing problem. That is, given a

sequence of symbols and a phrase structure grammar, determine whether

the sentence can be derived by the grammar or not. Depending on the class

a grammar belongs to, there are different parsing techniques called special

purpose parsers. There are two generic approaches that these parsers are

based on : Top-down parsing and Bottom-up parsing. In Top-down

parsing, the symbol S is expanded by successively substituting

nonterminals to try to fit the sentence. The goal is to discover a sequence of

substitutions that transform S to the given sentence. In Bottom-up parsing,

the method starts with the sentence and applies the grammar rules

backward, trying to contract to the symbol S. In other words, the sentence

is searched for subsentences that are the right parts of grammar rules.

These are then replaced by the corresponding left side.

www.manaraa.com

80

Here, we present a parsing technique called Earley Parser [Earley

1970] that is designed to recognize Context-Free language. Earley's

algorithm is a Top-down parser that carries along all possible parses

simultaneously in the form of parse lists.

Earlev Parsing Algorithm

Input : A Context-Free grammar G * <VN,VT,P,S> and an input string

W=8i&2&3“*&n’

Output: The parse lists l0,Ij,I2,...In for w.

Methods:

1. If S —> a is in P, add item [S --> ,a,0] to Iq.

Perform 2 and 3 until no new items can be added to Iq.

2. if [B --> y., 0] is in Iq, add [A --> aB.p,0] to Iq for all [A --> a.Bp,0).

3. if [A --> a.Bp.O] is in Iq, add [B —> .y,0] to Iq for all B --> y in P.

4. For each [B ~> a.ap,i] in 1̂ ., such that a = aj, add [B --> aa.p.i] to Ij.

Perform steps 5 and 6 until no new items can be added.

5. if [A - > a., i] is in Ij, add [B -> aA.p.k] to Ij for all [B ->a.ApJc] in Ir

6. if [A ~> a.Bp.i] is in Ij, add [B --> .yj] to Ij for all B -> y in P.

where a, p, y e V*. A, B€ VN.

www.manaraa.com

81

Decision rule : if there are some items of the form [S --> ct.,0] in In, then w

is in L(G).

Fig. 3.12. depicts a system that can discriminate different patterns.

First, a grammar is constructed for each language. Second, movements of

prices are coded as a sequence of symbols (sentences). By parsing a

sentence with respect to each grammar, it is possible to decide to which

grammar (pattern class) the incoming sentence (price movement) belongs.

Notice that there might be two undecisive outcomes of the procedure :

1) More than one grammar exists that can successfully parse the sentence,

so a pattern is classified into more than one pattern class.

2) The sentence cannot be parsed by any grammar. In other words, the

pattern is not classified to any of tire given pattern classes.

The first situation occurs because L(Gj),L(G2),...L(Gn) are not

disjointed. There are some sentences that are covered by more than one

language, implying that these sentences can be generated by more than one

grammar. There is no trival way to decide which class the pattern belongs

to. A cla s can be chosen randomly or human judgments are resorted to in

this situation. To avoid this undecisive result, care must be exercised

in designing grammars in such a way that the final pattern classes are

www.manaraa.com

82

f t

Pm
WW

o

O." K ”

CO
COm

0
EV
75Ou
<N
cn
eb
(I

www.manaraa.com

83

disjointed. Note that the grammar rules stated in the previous section are

all disjointed. In the second case, the pattern is called a noisy pattern with

respect to the given grammars. The pattern is distorted by the noise in such

a way that it does not belong to any of the pattern classes. Yet, it is possible

to decide which class a noisy pattern is most "likely" to be in. In the next

sections, the problem of classifying noisy patterns is addressed and a

procedure based on error-correcting parsing is used to discriminate noisy

patterns.

3.3.6. Recognizing Noisy Patterns

The problem of classifying noisy patterns is to find a pattern class that

the noisy pattern is most likely to belong to. A measure of likelihood or

similarity between patterns is required to make comparisons. The measure

is then extended to that between a pattern and a pattern class. The idea is to

search for a pattern (sentence) from each pattern class (grammar) which is

the most similar to the given noisy pattern. Amongst these patterns, the

most similar pattern is chosen. The noisy pattern is classified to the class

associateo with the chosen pattern. This is depicted pictorially in Fig. 3.13.

www.manaraa.com

84

www.manaraa.com

85

3.3.6.I. A Measure of Similarity of Patterns

To measure the similarity of two patterns is equivalent to measuring

how similar two sentences are. A metric to measure distance between

sentences is adopted from [Levenshtein 1966]. The metric is defined on

transformations. Three transformations are defined below :

1) Substitution transformation

w,aw2 —>* WjPw2, for all a , P e VT, a*p

2) Deletion transformation

wia W2 ->** w,w2, for all a e VT

3) Insertion transformation

wiw2 ~>i w,ow2, for all a € VT

where w,,w2 e VT*.

The distance between two sentences, x, y e VT*. denoted by dL(x,y), is

defined as the smallest number of transformations required to derive y

from x. 'Tie distance dL(x,y) is called the Levenshtein distance between

two sentences. A weighted Levenshtein distance can be defined by

assigning nonnegative weights w<i,wd,wl to substitution, deletion, and

www.manaraa.com

86

insertion transformations, respectively. Let T be a sequence of

transformations to derive y from x ; the weighted distance between x and y

denoted by d^Cx.y) is defined as

d^Cx.y) * min {w,n, + wdnd + w f t }
T

where ns, nd, and ^ arc the number of substitutions, deletion, and insertion

transformations, respectively, in J. In cases when ws=wd=w(=1, we have

dwL(x,y) = dL(x,y). For example, to transform \ \ \ \ \ / \ \ \ / t o a valley

requires three substitutions (see Fig. 3.14a.). However, only one substitution

is required to t r a n s f o r m \\ \ \ \ / \ \ \ / to a down-support (see Fig. 3.14b.)

3.3.6.2 Minimum-Distance Error-Correcting Parsers

Given a grammar G and a sentence y, the essene of error-correcting

parsing is to search for a sentence x in L(G) such that

d(x,y) ® min (d(z,y) I z e L(G)}
z

In other words, a minimum-distance error-correcting parser will

find a price pattern associated with a pattern class which is the closest to the

given pattern [Aho and Peterson 1972]. The procedure starts by expanding

G to incorporate the three types of transformations in the form of

ft

www.manaraa.com

87

\
\

\
\

/
/ «

/

\
/

T
\

<
\

\
/

/
/

/
/ \

V

/
/

*
/

/

/
/

/

‘I X/

\
\
/

/
/

/
/ \

/

/
/

/
/

*

<
/

r <
/

/
/

/

3tn

a
T3
C
CO
>»JL>
75>
os
0

1
O
eo
ra
§
£Ui
C
2
f-

m
t i
in

/
/

www.manaraa.com

88

grammar rules, called error grammar rules [Tanaka and Fu 1978]. The

expanded grammar G* includes not only L(G), but all sentences with

the three types of transformations. The parser constructed according to G'

with a provision to count the number of transformations used in a

derivation is called the error-correcting parser of G. For a given y, the

error-correcting parser of G will generate a parse which consists of the

smallest number of transformations (or the smallest accumulated weight).

A sentence x in L(G) that satisfies the minimum-distance criterion can be

generated from the parse by eliminating the error transformations.

Construction of Expanded grammar G’ from G

Input: a Context-Free grammar G = <VN, VT, P, S>

Output: <VN\ VT\ P\ S’>, where P' is a set of weighted grammar rules

Methods:

1. VN‘ = VN u [S’] u {Ea I a e VT}, VT' a VT.

2. if A —> a0biaib2....bmain, m £ 0 is a grammar rale in P such that 2l{ e VN”

and bj e T ; then add A —> a0Ebla1Eb2....Ebmain, 0 to P', where each Ebi is

a new nonterminal, E^ e VN\ and 0 is

the weight associated with this grammar rale.

www.manaraa.com

89

3. Add the following grammar mles to P\

Grammar Rule w eighted I i»vH «ht«n w eight

(1)S’-> S 0

(2) S' ~> Sa 5 for all a € VT

(3)E*->a 0 for all a € VT

(4)E .-> b o for all a € VT, b e VT* and a * b

(5)Ei -> X y for all a e VT

(6) Ea ~> b E,, 5 for all a € VT, b e VT'

The grammar rules in (2), (4), (5), (6) are called error grammar rules.

Each error grammar rule corresponds to one type of error transformation

on a particular symbol in VT. Thus, it is possible to measure the distance

between a sentence and a langauge by counting the number of error

gramma > (or accumulating the weights of grammar rules) used in the

derivation.

www.manaraa.com

90

For example, the expanded grammar of the valley pattern is shown below :

Gy' = < VT\ VN\ P* S*>, in which

VT = { W h

VT'= { <Valley>’, <Valley>, <uptrend>, <downtiend>, E/t E^},

S’ = <Valley>’

P' :

tar rule Levenshtein distance (ie, g=¥=S=l)

<Valley> —> <downtrendxuptrend> 0

<Valley> --> <downtrendxValleyxuptrend> 0

<Valley>' -> <VaUey> 0

<Valley>’ --> <Valley>/ 1

<VaUey>' -> <Valley>\ 1

<Valley>’ --> <VaUey>- 1

<uptrend> --> E, 0

<downtrmd> —> Es 0

E; -> / 0

Ef -> - 1

Er -> \ 1

ft

www.manaraa.com

91

E,~>/E , 1

Ey —> \Ey 1

Ey -> -Ey 1

E , - > \ 1

E , - > \ 0

E \" > " 1

E ,~ > / 1

E ,~>\E , 1

E \-> 1

E ,~>-E , 1

E , - > X 1

A modified Earlier Parser [Tanaka and Fu 1978] for the expanded

grammar G' with a provision to accumulate the weights associated with the

grammar rales used in a derivation is presented as follows :

Minimum-distance error-correcting Earky-Par&si

Input: An expanded grammar G' = (VN,,VT\P',S') and an input string y =

b|b2b3 ... m in VT-.

Output : I0,I,,I2,...Im, the parse list for y, and d(x,y), where x is the

minimum-distance correction of y.

www.manaraa.com

92

Method:

1. Set j = 0. Then add [E --> .S',0,0] to I j .

2. If [A ~> a.Bf}, i, £] is in I j , and B --> y, T| is a production rale in P\ then

add item [B ~> .y, j, 0] to Ij.

3. If [A ~> a., i, 4] is in Ij, and [B --> p.Ay, k, £] is in Ij, and if no item of

the form [B --> f3A.y, k, (j>] can be found in Ij, then add an item [B--> fJA.y,

k, i]+£+£] to Ij, where £ is the weight associated with grammar rule A -->

a . If [B~>pA.y, k, <j>] is already in Ij, then replace $ by ti+£+£ if 0 >

n+S+C
4. If j * m go to step 6 ; otherwise, j = j+1.

5. For each item in Ij., of the form [A --> a.bjp, i, £], add item [A ->

abj.(3, i, 41 to Ij and go to step 2.

6 . If item [E ~> S'., 0, £] is in Im, then d(x,y) = where x is the minimum

distance correction of y. Exit.

where a,|3,ye V*. A, B e VN'

The minimum distance correction distance of y, which is x, can be derived

from the parse by eliminating all the error grammar rules. A parse o f \ \ \ \

/ \ - / with the expanded valley grammar is shown in Fig. 3.15.

www.manaraa.com

<Y
»D

ey
>

93

7 1

S'
9

3

m
eb
£

www.manaraa.com

94

3.3.6.3. Classifying Noisy Patterns

By creating an expanded grammar for each pattern grammar and

constructing an error-correcting parser for each, it is possible to construct

classifiers that can discriminate noisy patterns. As shown in Fig. 3.16., a

pattern, say y, is first parsed with respect to each error-correcting

parsers G' j, G'2,...G 'M. The minimum error-correcting distance,

d(L(G|),y), between y and each pattern class L(Gj) is obtained and

compared according to the following criterion :

y is classified to Gk iff d(L(Gk),y) = min { d(L(Gj),y) I i = l...n}, k e

{l..n}

That is to say, y is classified to the pattern grammar that generates a

sentence which is the closest to y among others.

3.4. Language Acquisition based on Grammatical Inference

So far we have been assuming that the pattern grammars are provided

by the tracers. Depending on the pattern complexity, the task of specifying

a grammar to describe a pattern can be very tedious and erroneous. Instead

of acquiring these grammar rules manually, one can resort to

www.manaraa.com

En
or

-C
om

ct
in

c
Pt

is
en

95

6 6

« rM ■

0
A1M

I
VI
>1
o 's*©

A O

V)

E
VC
£
£
’o
Z

£5!
j
u
vd

•m
eb
IE

www.manaraa.com

96

automatic grammar rules inference techniques. The principle of these

techniques is to derive the grammar of a lauguage by directly inferring

from a set of sample sentences (patterns) of the language.

Grammatical inference is concerned with the procedure to infer the

grammar rules G based on a finite set of sentences St from L(G), the

langauge generated by G, and possibly also on a finite set of sentences from

the complement of L(G). The schematic diagram of a grammatical

inference procedure is shown in Fig. 3.17.

3.4.1. Grammatical Inference Procedure

The input to the inference procedure is a sample of a langauge L,

denoted by S,(L). S,(L) is defined to be the set {+x,,....+xn} u

{-x,..... -xm}, where S+ = {+x,,....+xn} is defined to be the positive sample

of St(L), and S' = {-x,, -xm} the negative sample of S,(L). S+ is said to

be structural complete if every grammar rule in G is used to generate at

least one sentence in S+. The property of structural completeness is

important because there is no one-to-one relationship between a grammar

G and the langauge L(G) that generated by G. The assumption of having a

ft

www.manaraa.com

97

www.manaraa.com

98

structural complete S+ will significantly reduce the size of possible

grammars for S+.

Furthermore, a class of grammar Q is admissible if : 1) Q is

denumerable, i.e. Q » {G,, G2, a n d 2) for any x e VT* , it is decidable

whether or not x e L(G), for any G in Q. Admissibility is a criterion that

determines the usefulness of the inferred grammars and needed to be

satisfied. In general, S+ is used to generate Q while S' is used to test the

validity of each G in Q in light of the given assumptions on grammar class.

The complexity of grammatical inference is dependent on the class of

grammar to be inferred. Unfortunately, most of the inference procedures

for the class of Context-Free langauge or above are heuristic in nature.

Finite-State language is the most easy to deal with because most questions

pertaining to Finite-State languages are decidable. However, some of these

questions are proved to be undecidable in other langauge classes. For the

rest of the chapter, we will primarily focus on Finite-State and

Context-Free Grammar only.

www.manaraa.com

99

3.4.I.I. Inference Procedure for Finite-State Pattern Grammar

The following procedure discusses the acquisition of Finite-State

pattern grammar rules. The following assumptions are made :

1) The grammar being inferred is Finite-State

2) The sample of the language St=(S+,S) is a finite sample

3) The set S* is structural complete

4) The inferred grammar G is such that S+ is a subset of G and S' is a subset

of tire complement of G.

Using these assumptions, an admissible class of Finite-State grammars

will be derived using S+ and the following inference procedure. Different

techniques will be used to select the inferred grammar from this

admissible class as the inferred grammar. When S' * <J>, the null set, the

information in S' can be used in the selection process.

The inference procedure discussed below will generate a Canonical

Definite Grammar Gc = ^ ^ . V ^ . P c . S ^ that can exactly describe a

given ST. The inference procedure is stated as follow :

1) Examine each x e S+ and identify all of the distinct terminal symbols

used in the generation of the strings of S+.

www.manaraa.com

100

2) For each xt = ailai2....ain, xt € S+, define the distinct set of rewriting

rules

S ~> ajiZu

Z ji --> a^

Each Zy represents a new nonterminal symbol.

3) The set VCN consists of S and all the distinct nonterminal symbols

produced by step 2. The set of P consists of all the distinct rewriting rules

defined by step 2.

The grammar G = <VCN,VCT,PC,SC> defined by the above procedure

is a Finite-State grammar which has the property

L(G) = S+ and S' is the subset of the complement of L(G)

For example, given S+ = {W/, V) and S' = 0 , the Canonical Definite

Grammar Gc corresponding to S+ is as follow :

VCT = { \/} , v CN = { Sc ,Z1,Z2,Z3,Z4,Z5}

ft

www.manaraa.com

101

Pc • Sc —>NZj Sc --> NZj

Zj —> NZj Z2 /Zj Zj /Z4 Z4 ~ > /

Zj --> /

The Canonical Definite Grammar so constructed may result in a large

nonterminal set. Some of the nonterminals in VCN are redundant. For

instance Z4 and Zj in the above example can be combined and replaced by

another symbol. By combining equivalent symbols, we can derive a more

compact grammar for S+.

It is possible to derive grammars from Canonical Definite Grammar

by partitioning the nonterminal set into different equivalent classes.

The grammars so constructed are called Derived Grammars. A Derived

Grammar GD= <VDN,VDT, P ^ S ^ is defined as follows :

V = {Bj, B2, B3,Bn), Bj B2 kj... o Bn — and for any izj

B ,nB j= t ,

V DT = V CT*

PD is defined as :

www.manaraa.com

102

1) A production of the form Bi --> aBjis contained in PD if and only if

die re exists Vcn such that Z* ~> a Z^ Z ^ e B| and 2^ e Bj.

2) A production of the form B* - > a is contained in PD if and only if there

exists Za € V CN such that Za --> a, Za e Bj.

To illustrate , let GD be the Derived grammar of the above Canonical

Definite Grammar with VDN = {B,, B2, B3, B4} where Bj = { Sc),

B2={Z1), B3 = {Z2) ,B4 = {Zj, Z4,Z 5), and the set PD is defined as

B ,-> \B 2 B ,-> \B 4 B2 -> \B 3 B3 -> /B 4 B4 -> / .

There are more than one way to partition the nonterminals in VCN,

implying that there are more than one grammars that can be derived from

a Canonical Definite Grammar. Since the number of derived grammars is

finite and it is decidable to determine whether two Finite-State Grammars

are equivalent, it is possible to enumerate all derived grammars and select

the most compact one.

www.manaraa.com

103

3.4 .I.2 . Inference Procedure for Context-Free Pattern

Grammar

Context-Free grammar is more difficult to deal with because some of

the questions that are decidable in Finite-State grammar are undecidable in

Context-Free Grammar. For instance it is in general undecidable to

determine whether two Context-Free grammars are equivalent or not.

Most of the inference procedures for Context-Free gramamr are heuristic

in nature. The following procedure as proposed by Solomonoff [1964] is

one that infers the grammar of a sample of sentences using a teacher as the

oracle.

This semi-automatic procedure will discover recursive grammar

rules for a subset of Context-Free grammar. The procedure described by

Solomonoff consists of two steps :

1) Delete substrings of a valid string and ask the teacher if the remaining

string is acceptable. By acceptable, we mean the string is a proper sentence

of the inferred langauge.

2) If the remaining string is acceptable, we reinsert the deleted substring

with several repetitions and ask if the resulting string is acceptable. If the

resulting string is acceptable, a recursive construction is formed.

www.manaraa.com

104

Let's consider the following example: Let W/ be a sample sentence, the

teacher has to evaluate the validity of the following strings :

{V/ // / \ V W W}

Suppose the first and the last characters are deleted from W/, the

remaining string (i.e. V) is evaluated to be valid. Then the teacher is

queried as to the validity of strings W/, W//» WW///,..... W..V..//. If they

are all acceptable for sufficiently large number of repetitions, the

grammar rules {A ~> \A/ A --> V} are inferred. Note that the Valley

grammar is rediscovered by this procedure. However this procedure, like

all heuristic inference procedures, can only infer Context-Free grammar

of specific structure. Nevertheless, the inference procedure as described

above can aid a trader to specify a pattern grammar if the grammatical

structure is known beforehand.

3.4.2. Language Refinement using Grammatical Inference

The inferred grammar using the foregoing inference procedures

probably will not the be exact grammar that identify the language if there

exists one. It is due to the fact that the sample (S+ S’) may be bias and

violate the assumption of structural completness. Although there is no way

to guarantee that a sample is structural complete, we can approach the

b

www.manaraa.com

105

exact grammar by periodically refine the grammar by using new pattern

samples.

To support this, we need a mechanism to evaluate the performance of

the pattern recognizer. Based on the architecture presented in the

foregoing chapter, patterns identified by the parsers are stored in a

decision log. Entries in this log is audited periodically by traders as

follows:

1) Each pattern is shown to a trader and the trader determines the class of

the given pattern.

2) Patterns that are concluded to be the same class by the trader and by the

parser are stored in S+ of the corresponding pattern grammar.

3) Conflicting patterns are stored in S* of the pattern grammar.

4) If the number of conflicting patterns in a pattern grammar detected in

step 3) has dropped below a threshold level, the inference procedure is

invoked to derive a new grammar based on the new pattern sample.

The schematic diagram of a pattern recognizer with langauge

refinement is shown in Fig. 3.18. Pattern Recognizers so constructed can

be integrated with a trading expert system to provide real time data

pertaining to price movement. The built-in mechanism of language

refinement will automatically adjust the pattern knowledge which are

www.manaraa.com

106

Pattern
Classification

..G.

Pursers

Fig. 3.18. Pattern Recognizer with Language Refinement

www.manaraa.com

107

represented in the form of grammar rules. These refined rules are then

used to build parsers for the pattern recognition engine.

Obviously, not all trading decisions involve merely the ability to

recognize patterns. The assessment of the supply and demand of securities,

generally referred to as fundamental analysis, is also essential in

formulating trading strategies. By delegating the task of technical analysis

(i.e. pattern recognition) to a computer, a trader can concentrate on

assessing these factors. This allows the tractor to respond more quickly to

incoming market information than otherwise.

www.manaraa.com

108

CHAPTER 4

TRADING RULES ACQUISITION AND REFINEMENT

4.1. Introduction

The world economy is experiencing an explosion in financial

innovations. The result is a proliferation of financial instruments. The

impact is indeed significant. New alternatives in funding, hedging,

arbitraging, underwriting and investing are made possible by these

innovative products. However, the complexity involved in formulating a

trading strategy has also increased monotonically with these instruments.

The trading process is further complicated by the fact that the market is

getting more and more volatile and unpredictable. Selling and buying

decisions have to be made on the spot under extremely tight time

constraints.

To support decision making, complex models of the markets have

been developed in an effort to provide analytical guidance to traders.

However, in practice, especially in situations of high price volatility and

under tight time constraints, these models offer little help. Analytical

models on their own are not sufficient. Human judgments are resorted to in

www.manaraa.com

109

these situations. In fact, die decision-making process of a trader is driven by

his experience, perception, and risk perference, in most cases. This

explains, at least partially, why traders respond differently under identical

market conditions. Thus, it is plausible to believe that in every trader's

mind there is a unique decision model associated with the markets.

Apparently, trading decisions executed by these traders are not

random, but are guided by their models which evolve through years of

trading practice. Cognitively, this mental model of tire market is difficult to

elicit. The same kind of difficulties are experienced by knowledge engineers

during the knowledge acquisition process in developing expert sytems. As

pointed out in [Ericsson and Simon 1984], only the information residing in

short term memory can be easily articulated. Numerous techniques have

been developed to assist knowledge engineers in carrying out the task in a

more effective manner. These techniques go in two directions. Some of

them are manual techniques such as interviewing [Newell and Simon 1972]

and protocol analysis [Waterman and Newell 1971]. Others are concerned

with the development of computer-based knowledge acquisition systems.

The approach described in this chapter falls into the second category.

Two inductive procedures are presented to acquire trading knowledge

based on a set of sample decisions. These sample decisions can be readily

www.manaraa.com

110

obtained from previous trading transactions. Here, trading knowledge takes

the form of rules called trading rales. A typical trading rale is shown

below:

if the Yen/Dollar exchange rate has broken the up support

and the trade deficit between U.S. and Japan shows no sign of decline

and the budget deficit of U.S. remains high

then

take a long position in Yen Futures

A trading rule describes how a particular market condition is

interpreted or reacted to by a trader. The market model of a trader is

composed of a set of these trading rales. In the above rule, a trader decides

to take a long position in Yen Future only if 1) the exchange rate movement

has broken the up support, 2) the trade deficit shows no sign of declining,

and 3) the budget deficit remains high. Thus, if the actual market

situation satisfies these three conditions, then buying Yen Futures is

recommended. Moreover, it is quite possible that some of these conditions

are dependent on others. For example, the trade deficit between Japan and

the U.S. might in turn depend on how far away from the next election year

and how open is the Japanese market in the near year, as shown by the

following trading rale.

www.manaraa.com

I l l

if the time from next election year is more than a year

and the Japanese market is not open in the next year

then

trade deficit remains high

Each trader has his own set of trading rales which govern his decision

making process. Obviously, a successful trader is one who makes the right

decision at the right time. Good decisions are ones that have positive

impacts on the company in monetary terms. Hence, trading rules are

valuable assets of the trader and his company as well. In this chapter we will

present two inductive procedures for acquiring these rales and discuss how

these rules can be used in constructing intelligent trading systems.

Indeed, a number of banks and brokerage houses have launched projects to

develop expert systems to assist their trading activities [Reid 1986]. In order

to have an expert system function in conformance with its initial

specification, the right kind of knowledge (i.e. trading rules) has to be

elicited.

The induction approach we use here is based on the conceptual

frameork set forth by Winston [1975] Michalski [1980] [1983], Buchanan

[Buchanan et. al 1980], and Mitchell [1977,1982]. A number of

experimental systems which are based on this framework have been built

www.manaraa.com

112

(AQ11 in soybean disaease diagnosis [Michalski et. al 1980a] and

Meta-DENDRAL in chemical structure analysis [Buchanan et. al 1980]).

Although the forms of knowledge representation used in these systems vary,

the learning techniques used are collectively referred to as "learning from

examples" (or "teaming by induction") [Dietterich et al. 1983]. Acquiring

knowledge by using these techniques has proved to be a feasible

alternative to circumvent the bottleneck of knowledge acquistion in

building expert systems. In fact, it was claimed that A Q ll's result in

soybean disease diagonsis has outperformed experts in some cases

[Michalski et al.l980a, 1980b].

The appealing results obtained from some of these projects have

revealed the potential application of induction as a general knowledge

acquisition paradigm. We proceed by first presenting in Section 4.2. a

rule-based language that is used to state trading rules. Three spaces are

then derived from the language, allowing one to envision the induction

operators/procedures from a state space perspective. Section 4.3. sketches

out the basic idea of the two procedures and explains the mechanism by

using the notion of space partitioning. Section 4.4. introduces a number of

induction operators which are used to transform trading rules. The two

ft

www.manaraa.com

113

procedures are presented in Section 4.5. and illustrated with examples.

Section 4.6. concludes with a discussion of knowledge refinement.

4.2. A Language for Trading Rules

In this section, trading rules are stated using a rule langauge defined

below. One form of knowledge representation scheme commonly used in

building expert systems is production rules. The rule language described

here can be considered as a specific form of production rules. There are

three syntactic constructs in this language : Feature, Template, and Rule.

Features — A feature represents an independent attribute of a market. These

features, F,,F2, . .. Fn where n is finite, together identify the dimensions

of the market.

e.g., interest-Rate, Economy-Status

Features Domains -- For each feature, there is a finite set of values

associated with it. They are called feature domains and are denoted by

Dom(Fj), Dom(F2), .. Dom(Fn). Each domain specifies the scope of a

feature, and collectively, they specify the scope of the market.

www.manaraa.com

114

Furthermore, elements of a domain set can either be ordered or

unordered.

e.g., Dom(Economy-Status) = {Good, Poor, Fair} is defined to be

unordered and Dom(Interest-Rate) = (0.0,0.1,0.2,...200.0} is ordered

Ordering of domain values is important because some learning operators

can only be applied to ordered feature domains. Learning operators will be

explained in detail in Section 4.4.

Templates - A tuple of the form (Ft Vj) where Dom(Fj) a Vj, 1 <x i £ n. A

template identifies the specific value(s) associated with a feature,

e.g., (Interest-Rate 7.8)

Rules - A rule consists of two parts : condition and conclusion separated

by It takes the form

(F, V,)(F2 V 2U (F nA Vm.j) => (Fm Vm),

where DomCF;) aV j, i=l,2,..m.

The condition part consists of a list of templates. The ordering of

templates in a condition is not important. In logical terms, one can think of

the template list as a conjunctive statement without variables. As will be

www.manaraa.com

115

discussed later, a condition characterizes a subspace which cannot be

altered by the order of the templates.

e.g., (Interest-Rate 7.8XUnemployment-Rate £ 5.6) => (Economy-Status

good)

The semantics of a rule as illustrated by die above example is that the

condition part specifies the current situation (or interpretation) of the

market (i.e. Interest-Rate is 7.8% and Unemployment-Rate is less than

5.6%). Based on this condition, the conclusion (i.e. Economy-Status is

good) is drawn. The less than sign is a shorthand for a subset of

ordered domain values. Whether (Interest-Rate 7.8) proceeds

(Unemployment-Rate £ 5.6) or the other way around is not important and

does not alter the meaning of the rule.

Based on the above language, three spaces are defined as follows :

1) Feature Space F

F = Dom(Fj) x Dom(F2) x ...Dom(Fn) •

F is the Cartesian product of individual feature domains. It defines the scope

of the market and thus covers all possible market situations. An element x e

F is called a state in F.

www.manaraa.com

116

2) Template Space T

T * {Fj x DonrKFj)} u {F2 x DomCF^}... u {Fn x Dom(Fn)}

T is die set of templates given F. The power set of T minus {<j>} is denoted

by P(T). P(T) is the set that contains all subsets of T, excluding the empty

set From a state space perspective, an element of P(T) divides F into two

disjointed partitions. To illustrate this, let us consider an element of P(T),

say t, where t = {(F, Vj) (F2 V2)}. The partitions induced by t on F arc

t’ * {Dom(Fj) -V ,) x {Dom(F2> - V2} x DomOF^... x Dom(Fn)

t" = V, x V2 x Dom(F3) x Dom(F4)... x Dom(F„)

Note that t' u t" = F and t' n t" = «j>. F are divided by t into 2 disjointed

partitions : elements in F with values of F, and F2 that cover V, and V2,

respectively, are contained in t", with t' containing the remaining elements.

3) Rule Space R

R = { z I z : x => y where x e P(T) and y e T }

In the context of security trading, R is interpreted as the set of all possible

trading rules that a trader uses to relate market conditions to conclusions.

www.manaraa.com

117

43 . A Sketch of the Induction Procedures

Let us sketch out the mechanism of the induction procedures by

using the language defined above. By induction, we mean to infer

general principles from specific instances. In this chapter, this is

translated to inferring trading rules from previous trading decisions.

Given the above language, there is conceptually no difference between a

rule and an example. Both are partitions of F. In the following discussion,

the terms "rules," "example," and "partitions" can be interchanged. To

illustrate this, let us consider an example (Fig. 4.1.) of buying Yen Futures

as shown below:

(+ve) (Trade-Deficit large XJapan-Prime-Rate high) => (Buy Yen-Future)

For simplicity, only two features are used in this example. For the rest of

the chapter, we use (+ve) and (-ve) to denote positive and negative

examples, respectively. These two features (Trade-Deficit and

Japan-Prime-Rate) and their associated values induce a partition in F. This

was explained in the previous section. In a similar fashion, a negative

example of buying Yen Futures such as

(-ve) vJapan-Prime-Rate low) => (Buy Yen-Future)

is also a partition in F (Fig. 4.2.)

www.manaraa.com

118

Tnit-Dtfkfe

Lwf» - ■

<»»U - •

■ - a itali it F

Fig. 4.1. Partition of (Trade-Deficit large)(Japan-Prime-Rate high) =>

(Buy Yen-Future)

www.manaraa.com

119

L*r*t -■

m eltnit - •

sa iil -■

 1-

Fig. 4.2. Partition of (Japan-Prime-Rate low) => (Buy Yen-Future)

www.manaraa.com

120

Given a collection of examples of a decision, say buying Yen Futures,

the induction procedures attempt to infer the relationships between the

market situations and the decision of buying Yen Futures from these

examples. Each example describes a unique market condition that relates to

a decision of buying Yen Futures. Negative examples are also used. A

negative example spells out the wrong market condition related to a

decision. Similarly, negative examples appear as partitions in F. The

induction procedures discussed in this section are search methods that

search for partitions in F (or equivalently rules in R) that are consistent

with the given examples.

The idea can be explained pictorally in Fig. 4.3. Given a collection of

initial partitions (both positive and negative examples of a decision), an

induction procedure expands, contracts, and unifies these partitions so as

to generate a new set of partitions (rules) that are more general

(larger) than the initial examples. The ideal case here is to partition F in such

a way that positive and negative examples reside in different partitions.

The operators required to alter the partitions and how these operators are

used in die induction procedures are discussed in the next two sections.

www.manaraa.com

121

1
=> =>

=> - partitioning of the feature space F

0 - positive examples

X - negative examples

Fig. 4.3. Rules Induction

www.manaraa.com

122

4.4. Induction Operators

Induction operators are the means by which knowledge (ie. trading

rules) can be transformed. As indicated in surveys by Bunley et al. [1985]

and Dietterich et al. [1983], there are basically two types of operators in

most rule acquisition systems : generalization operators and specialization

operators. Generalization and specialization operators generalize and

specialize rules, respectively. In terms of partitioning, the former expand

and unify partitions while the latter contract partitions. Some of these

operators are context sensitive in the sense that they can only be applied to

ordered feature domains. The induction operators associated with the rule

language are listed below:

Generalization Operators :

The sign "G>" means "generalizes to"

1) Dropping-Conditions

Dropping condition operator generalizes a rule by dropping a template

from the condition of a rule.

(F, V,XF2 V2) => (F3 V3)

G>

(F, V ,)=>(F3 V3) or (F2 V2) => (F3 V3)

www.manaraa.com

123

eg. (Trade-Deficit large)(Japan-Interest-Rate high) => (Buy Yen-Future)

G>

(Trade-Deficit Large) => (Buy Yen-Future) or

(Japan-Interest-Rate high) => (Buy Yen-Future)

2) Min-Max-Reference

Min-Max-Reference operator is applicable to rules that have the same

feature on their conditions but are associated with different singleton

values. These singleton values are then expanded to sets of values by taking

the minimum and maximum of Vj and V2, respectively. Note that in order

to apply this operator, the feature domain has to be ordered.

(F, V,) => (F3 V3)

G> (F, <; max(V,,V2)) => (F3 V3) or

(F, £ min(Vj,V2)) => (F3 V3)

(Fj V2) => (F3 V3)

where Dom(Fj) is ordered

For exarr ole, (Unemployment-Rate 9.8) => (Economy-Status poor) and

(Unempolyment-Rate 11.0) => (Economy-Status poor)

G>

www.manaraa.com

124

(Unemployment-Rate £ 11.0) => (Economy-Status poor) or

(Unemployment-Rate £ 9.8) => (Economy-Status poor)

where Dom(Unemployment-Rate) * {0.0,0.1, 50.0}

3) Extending-Reference

Similar to the Min-Max-Reference, this operator applies to rules that

have the same feature in their conditions. However, the

Extending-Reference operator is applicable not only to singleton values, but

to set of values as well. It unifies the different set of values associated with

the feature.

(Ft V1)^>(F3V3)

G> (F, V, u V ^ ^ V j)

(F, => (F3 V3)

For example,

(Budget-Deficit large => (Treasury-Bill-Interest-Rate-Auction up) and

(Budget-Deficit moderate) => (Treasury-Bill-Interest-Rate-Auction up)

G>

(Budget-i^eficit {large,moderate })=>(Treasury-Bill_interest-Rate-Auction

up)

www.manaraa.com

125
!

4) Next-High-Point

This operator extends the set of values associated with a feature by

including the next higher element into die set

(Fj £ V,) *> (F3 V3) G> (F, <; Vj) =» (F3 V3)

where Dom(F,) is ordered and V2 is the next higher value of V,

For example, (Unemployment-Rate £ 11.0) => (Economy-Status poor)

G>

(Unemployment-Rate £ 11.1) => (Economy-Status poor)

where Dom(Unemploymenet-Rate) = {0.0,0.1,..11.0,11.1,...50.0}

5) Next-Low-Point

In a similar fashion, Next-Low-Point generalizes a rule by including

die next lower value in the set of values associated with a feature.

(F ,2: V2)=>(F3 V3) G> (Fj 2: V,) => (F3 V3)

where Dom(Fj) is ordered and V2 is the next higher value of V1

For example, (Unemployment-rate £ 11.1) => (Economy-Status poor)

G>

(Unemploy ment-Rate > 11.0) => (Economy-Status poor)

where Dom(Unemployment-Rate) = (0.0,0.1,..11.0,11.1,..50.0}

www.manaraa.com

126

Specialization operators :

the sign "S>" means "specializes to"

1) Adding-Conditions

This operator is the reverse of die Dropping-Condition generalization

operator. It combines two rules by combining die conditions of the two rules

into one.

(Fj V,) ®> (F3 Vj)

S> (F1V1KF2 V2)^>(F3V3)

(F2 V2) => (F3 V3)

For example, (Unemployment-Rate 15.0) => (Economy-Status poor) and

(Inflation-Rate 17.0) => (Economy-Status poor)

S>

(Unemployment-Rate 15.0)(Inflation-Rate 17.0) => (Economy-Status poor)

where Dom(Unemployment-Rate) = {0.0,0.1,..11.0,11.1,..50.0},

Dom(lnflation-Rate) * (0.0,0.2....15.4,15.6,....300.8}

2) Clos.ng-Interval

When this operator is applied, the range of values associated with a

feature is bounded from either above or below by the next higher or lower

www.manaraa.com

127

value, respectively. Note that this operator is applicable to ordered feature

domains only.

(F, £ V,) *> (F3 V3) S> (F, {V,.V2})*>(F3V3)

(F, £ Vj) => (F3 V3) S> (F, (V1,V2})=>(F3 V3)

where Dom(Fj) is ordered and V2 is the next higher value of V,

For example,

(Inflation-Rate £ 15.4) => (Economy-Status poor)

S>

(Inflation-Rate {15.4,15.6}) => (Economy-Status poor)

where Dom(Inflation-Rate) = (0.0,0.2,... 15.4,15.6,....300.8}

3) Next-High-Point

The Next-High-Point specialization operator reduces the set of ordered

values of a feature by discarding the smallest value in the set.

(Fj £ V,)=> (F3 V3) S> (F, ^ Vj) => (F3 V3)

where Dom(F,) is ordered and V2 is the next higher value of V,.

For example,

(Persian-Gulf-Tension £ tight) => (Gold-Future-Trend up)

S>

www.manaraa.com

128

(Persian-Gulf-Tension extremely-tight) => (Gold-Future -Trend up)

where Dom(Persian-Gulf-Tension) * (stable,tight, extremely-tight) and is

ordered.

4) Next-Low-Point

Next-Low-Point reduces the set of ordered values of a feature by

discarding the largest value from the set.

(Fj £ Vj) =s> (F3 V3) S> (F, ^ Vj) => (F3 V3)

where Dom(F,) is ordered and V2 is the next higher value of V,.

For example,

(Inflation-Rate £ S.6) => (Economy-Status fair)

Sb>

(Inflation-Rate £ 5.4) => (Economy-Status fair)

where Dom(Inflation-Rate) « (0.0,0.2,... 15.4,15.6,....300.8).

One can think about these operators as functions that map mle(s) to

rule. By application of these two kinds of induction operators, the number

of states in F covered by a rule can be altered. An induction procedure is

an algorithm that systematically applies these operators to partition F to

generate rules that satisfy certain predefined induction criteria. The two

www.manaraa.com

129

induction procedures, one based on specialization operators and the

other cm generalization operators, will be presented in the next section.

4.5. Two Induction Procedures based on Space Partitioning

Both of these procedures are centered on the concept of "learning

from examples" [Dietterich et al. 1982]. Their input-output requirements

are depicted in Fig 4.4. To learn a concept or a trading decision,

previous scenarios or cases are used as examples from which general

trading rules are inferred.

Another parameter of these two procedures consists of the induction

criteria. They characterize the goal of the search procedure by deciding

which search space should be pruned. In a survey by Angluin et al. [1983] on

inductive inference, the majority of practical and theoretical studies on

inductive inference methods are associated with two conflicting criteria -

Simplicity and Goodness of Fit.

S im plicity - In characterizing a concept, a simple yet powerful

description is most desired. In other words, we would prefer a rule that

has the smallest number of features in its condition. Suppose we have the

following two rules relating to Economy-Status :

www.manaraa.com

In
du

ct
io

n
cr

ite
ri

a
(S

im
pl

ic
ity

and

Go

od
ne

ss

of
Fi

t)

130

o>

Cl

_ 'X X
CL ; a

2 •- rvi « Q. O-

!*s. »-
S 2
• 5
1 8
\ ot

ac
CL

w

c 3.

X3

T3
CL

O.

CL

C 1O •
• c s
i ? 2

® -2
« S.* I s -*C *

60
E

• X

•*= °

www.manaraa.com

131

1) (Inflation-Rate £ 4.6XUnemployment-Rate £ 10.0) =>

(Economy-Status good)

2) (Trade-Surplus high) *> (Economy-Status good)

If both rules cover all positive examples and reject all negative

examples of a good economy, then rule 2 is preferred over rule 1. The

reason is that Trade-Surplus is the dominant feature in describing a

good economy, and having only oik feature does not impede the validity of

rule 2 in describing a good economy.

Goodness of fit - In the search for the simplest description of a

concept, the result rule might consist of very few features. Yet, it might

be too general to apply in other situations. For instance, the statement "all

good students are human beings" is too general in describing good

students. In order to prevent a concept from being over generalized, the

generalization process should be driven by the examples provided. The

idea is similar to regression analysis in statistics in which a linear

regression line that minimizes the least square distances from the provided

data poir.ts is estimated.

www.manaraa.com

132

In our procedures, we would prefer a rule that partition F in such a

way that positive and negative examples are totally separated. A rule

would probably become more complicated (involved more features) in

order to cover more positive examples (or reject more negative

examples). Moreover, it might not be possible to have a single rule in cases

when examples are not clustered in a local region in F. Simplicity and

Goodness of fit are two conflicting criteria that require tradeoffs to be made

and input to the induction procedures. For instance, Fig. 4.S. is a list of

combinations between the two criteria which have no absolute preference

ordering. The tradeoff between these two criteria is specified by five

parameters in the procedures :

w, - number of positive examples covered by a rule (local)

w2 - number of negative examples rejected by a rule (local)

w3 - number of features in a mle

w4 - number of positive examples covered by a set of rules (global)

ws - number of negative examples rejected by a set of rules (global)

A distinction is made here between the number of examples covered

(or rejected) by a rule and that by a set of rules. The former is referred to

as local while the latter global. The reason is that it might require more

www.manaraa.com

133

no. of ♦vt
•xamplea

covarad

no. of -vo
•xampioo
rajactad

no. of
footuroo

A 12 26 5

0 12 16 4

C 0 10 4

0 14 26 6

Fig. 4.5. Four Combinations of Criteria with No Absolute Ordering

www.manaraa.com

134

than one rule in relating market conditions to a conclusion in order to be

consistent with the examples. As mentioned before, examples that scatter in

F might form clusters which cannot be described by a single rule. Instead,

drey are described by a set of rales. Therefore, separate parameters w4 and

w5 are required when rales are assessed collectively.

For instance in Fig. 4.6., there are 2 positive examples and two

negative ernes. Suppose we specify that each rule has to cover 50% (w,) of

positive examples and reject 50% (w2) of negative examples. The two

rales are satisfied individually. However, if tire two rales are considered

jointly, they together cover 100% of positive examples and reject 0% of

negative examples!

Notice that the actual local acceptance rate of positive examples is

always greater than or equal to the actual global rate. But this is not true

for negative examples. The actual local rejection rate always equals or

underestimates the global one as illustrated in tire above example. In order

to have a feasible set of criteria, we would like to specify values of w1>w2.w4

and ws that satisfy the following constraints :

www.manaraa.com

135

Rul* B

Rut* A

O - positive *x*mpl*

X - n*fl«tlv* cximpl*

Fig. 4.6. Example of Local and Global Criteria

www.manaraa.com

136

1) W j ^ W 4

2) w5 <i w2

The proof is as follows : Suppose n rules, RlfR2, R„, are used to describe

a trading decision. Given a set of positive examples N+ and a set of negative

examples N. of this decision, let P+(Rj) and P.(R,), 1 € i € n(denote the

actual number of positive examples and negative examples covered by each

of these rules, respectively. It follows that the positive examples covered by

these rules is

P+(Rj) u P+(R2> u P+(R„) a P+(Rj), 1 * i * n (4-1)

and the global acceptance rate of positive examples become

I P+(R,) u P+(R2> u P+(R„) I / INJ 2:1 P+(R4) I / INJ, 1 <; i <; n (4-2)

In (4-2), L.H.S of the inequality represents the actual global acceptance rate

of positive examples, and R.H.S. of (4-2) denotes the acceptance rate of

individual rules, implying that w4 ^ w,. Similarly, the negative examples

rejected by these rules is

N. - P.(Rj) a N. - P.(R,) u P_(R2) u P (Rn). 1 <; i £ n (4-3)

www.manaraa.com

137

The global rejection rate of negative examples then becomes

l{N - P.(Ri)}l/IN.I £ IN .-P .(R ,)u P (R j) u P.(Rn) I/ INJ (4-4)

where 1 £ i £ n

Since the L.H.S. of (4-4) is the actual rejection rate which is always greater

than or equal to the local rejection rate (R.H.S. of 4-4), in order to be

feasible, we need ws £ w2.

Let us proceed to discuss the algorithm of tire two procedures. We start

with the one that uses specialization operators only.

Induction Procedure (Specialization)

1. initialize final rule set R to {) and raw rule set R' to F;

2. initialize R' with feature domain constraints if any;

3. while R* * (} do

4. generate new rules by applying specialization operators to rules in R';

5. for each raw rule r generated in 4 do

6. if r covers at least w,% positive instances and the number of

.eatures <, w3 then begin

7. R' = R' u {r};

8. R’ = R* - parent(s) of r

www.manaraa.com

138

9. End(if);

10. for each parent rule Pr in R' do

11. if no successor rule is in R' then begin

12. R * R u { P r);

13. R’ = R’-{Pr}

14. End(if);

13. End (while);

16. Remove all rules in R which reject less than w2% of negative examples;

17. Check rules in R against the global parameters w4 and w3;

18. Remove redundant rules in R';

The procedure is a general-to-specific breadth-first search procedure

that generates rules by incrementally specializing F or the initial

partitions of F. It operates on two rule sets R and R’. R contains final

rules while R' contains candidate rules to be specialized. Initially (step 1),

R is null - no final rule has been generated. If additional information or

constraints are available, they can be incorporated into the procedure in

the form of initial partitions of F. This takes place in step 2. This

information can be obtained from a number of sources (experts and

t:

www.manaraa.com

139

observations) and is useful in reducing die time of search. For instance,

if the Inflation-Rate is known to be less than 10% when the economy is

good ((Inflation-Rate £ 10.0) *> (Economy-Status good)), then the search

procedure can neglect those elements in F with Inflation-Rate larger than

10%.

Depending on whether extra information is available or not, R' is

initialized to F or the initial partitions of F accordingly. The search

procedure starts in step 3 : for each rule in R', specialization operators

are applied to generate more specialized rules. After all rules in R' are

tried, a new set of rules which arc more specialized than their parents has

been created. Duplicated or redundant rules are discarded from R’. Since

this is a general-to-specific search procedure by incrementally specializing

F to fit the examples, if there exist two rules in R' with one implying the

other, then the more general one is discarded. Tire procedure then checks

whether each new rule covers the prescribed percentage of positive

examples (wt) and the number of features (w3). If satisfied, the new rule is

put into R' and the parent of which is deleted from R'. The reason is that

since the child is more specific than its parent(s) and satisfies Wj and w3,

there is no need to keep the parent(s) in R'. These operations take place in

www.manaraa.com

140

steps 5 - 9 . Note that rules in R' always satisfy w1 and w3 during the

search.

There might be cases that some rules in R’ do not have children that

satisfy both w, and w3. These rules are then discarded from R' and are put

into R (steps 10-14). Steps 4 -14 are then repeated until R' is empty. When

R’ becomes empty, it implies that no rule can be specialized anymore. If

no rule is collected in R after R' becomes null, then no rule can satisfy the

given Wj and w3 values. The procedure has to be rerun with different

w,,w2 and w3 values. In cases when R is not null, the procedure will retain

those rules in R that also satisfy w2. Finally, the set of rules in R is checked

with w4 and w5 on a global basis. This is carried out by counting the

number of positive examples that are covered by rules in R. Negative

examples are done in a similar fashion. If satisfied, R is output as the final

rule set. Otherwise, the procedure has to be rerun with different

parameter values. In the last step, redundant rules are eliminated. The

search r schanism of the procedure can be illustrated by the following

example.

www.manaraa.com

141

Example

In this hypothetical example, we want to leam the trading rules of

buying Yen Futures. Four previous trading decisions are used as input

examples to the procedure. Out of the four examples, two are positive and

two are negative. To further simplify these examples, only two features

are used in the four examples as defined below :

TD - Trade deficit between Japan and U.S. (in billions $)

ER - (1 + one year bond rate of Japan)/(1 + one year bond rate of U.S.),

where

Dom(TD) = {0... 50,60,70,...200} (ordered)

Dom(IR) « {0.200,0.201...........5.000} (ordered)

(+ve/-ve) Rules

+ve (TD 70)(IR 1.098) => (Buy Yen-Future)

+ve (TD 63)(IR 1.095) => (Buy Yen-Future)

-ve (TD 20)(IR 1.080) => (Buy Yen-Future)

-ve (TD 10)(IR 1.001) => (Buy Yen-Future)

If e are provided with the initial beliefs that it is the right

condition to buy Yen Future whenever TD £50 or IR £ 1.100, then our

www.manaraa.com

142

procedure can start from the partitions induced by the following two

rules:

1. (TD 2:50) *> (Buy Yen-Future)

2. (IR ^ 1.100) => (Buy Yen-Future)

In this example, w1,w2,w3,w4,and ws are set to 100,100, 3,100, 100

respectively. The entire search procedure of this example is shown in

Fig.4.7.. The final rule obtained in R is (TD {60,70})(IR £ 1.098) => (Buy

Yen-Future).

Induction Procedure (Generalization)

The difference between this procedure and the previous one is that it

uses a specific-to-general search technique as opposed to the

general-to-specific approach in the previous procedure. It starts with an

initial set of positive examples and incrementally generalizes the positive

examples. The idea is to generalize some specific cases to obtain more

general rules. The search mechanism is similar to Michalski' INDUCE

method m [Michalski 1983] in the way that positive examples serve as the

seeds of generalization.

www.manaraa.com

vf
O

(S
O

.iO
))

(T

O
16

O)

(ID

iS
O

H
lR

it

10
0)

(IB

(1

M
O

.
1.

10
0)

)
(I

R
«1

09
9)

143

www.manaraa.com

144

1. initialize final rule set R to {};

2. initialize raw rule set R’ with positive examples and constraints if any;

3. while R’* {) d o

4. generate new rules by applying generalization operators;

3. for each new rule r generated in step 4 do

6. if r rejects at least w2% of negative examples and contains less

than w3 features then

7. R‘ = R' u {r)

8. end;(for)

9. for each parent rule Pr in R' do

10. if no child is in R' then

11. R = R u (P r);

12. R' = R' - {Pr)

13. End;(for)

14. End;(while)

15. For .ach rule r in R do

16. if r covers less than w,% of positive examples then

17. R = R - {r);

i

www.manaraa.com

145

18. End;(for)

19. check if each rule in R satisfies the global parameters w4 and ws;

20. discard redundant rules in R.

Steps 1 and 2 initialize the two rule sets R and R’ with {} and

positive examples, respectively. Generalization operators are then applied

to rales in R' to obtain more generalized ones (Step 4). Only those new rales

with less than w3 number of features which also reject w2% of negative

examples are retained in R' (Step 5 - 8). Again, duplicated or redundant

rales are discanted from R’. Rules that are covered by others are redundant

and are discarded from R'.

The next step is to identify rales in R' that cannot be generalized

anymore. They are those rules with all their children rejected in step 6.

These rales are discarded from R' and put into the final rale set R. All

other parent rales are also eliminated from R because the newly generated

rules are more general and their parents need not be retained. The above

operations are repeated until no more rules can be generalized (ie. R'= {}).

The rules obtained in R after the procedure exists from the main search

loop are tested whether they cover w,% of positive examples or not (Step

www.manaraa.com

146

15-18). Rules that fail the test are discarded from R. If R is null, the search

is concluded to have failed with the given w2 and w3 values. The search has

to be restarted with another set of parameters. In step 19, the remaining

rules are then tested globally against the specified w4 and w5 values.

Finally, redundant rules are deleted from the final rule set. If satisfied, R is

output as the final rule set Otherwise, the procedure has to be rerun again

with a different set of parameter values.

Example

Fig. 4.8. illustrates the search mechanism of the generalization

procedure as applied to the previous example. The same set of feature

names is used. Four different examples are used as shown below:

Rules

+ve (TD 70)(IR 1.090) => (Buy Yen-Future)

+ve (TD 80) => (Buy Yen-Future)

-ve (TD 65) => (Buy Yen-Future)

-ve (IR ^1.087) => (Buy Yen-Future)

Here, w,, w2, w3, w4 and w5 are set to 100,100, 3, 100, 100 respectively.

www.manaraa.com

(10

70
)

Of
t

I
09

0)

(1
0*

70
)0

9
I

09
0)

(1

0*
70

)0
9

10
90

)
(T

0
70

)(
IR

t1

09
0)

(TD

70

)(l
ft

11
09

0)

147

www.manaraa.com

148

The final rules generated are

1. (TD £ 70XIR £ 1.088) =*> (Buy Yen-Future)

2. (TD 80) => (Buy Yen-Future)

4.6. Knowledge Refinement

We have presented two procedures, both based cm induction learning,

in acquiring trading rules. The trading rules so acquired using these

methods might become obsolete as the market envimoment changes. To

keep our knowledge updated, we have to update the rules periodically. This

can take place in two ways :

1) Redefine the feature space -- new features may be added and existing

features deleted from F. The size of existing feature domains may need to

be enlarged or reduced. The scope of the market defined by F has to be

updated in response to changes in the market environment.

2) New set of trading rules -- a new set of trading rules has to be inferred

periodically to keep track of the changes in the trader’s perception of the

market.

The Knowledge base of most current expert systems is static in nature.

There is little or no mechanism provided to update the knowledge. Except

for domains that do not change rapidly, the knowledge acquired might no

www.manaraa.com

149

longer be valid at a later stage. This is particularly true in security trading

where the knowledge is intensive and is changing rapidly. To build expert

systems in this area necessitates an automated knowledge acquisition and

updating mechanism to be built together with the inference engine. Using

the induction procedures, a new set of trading rules can be generated by

running the procedures with a new set of examples, assuming that the new

examples fairly reflect the changes of the market.

To achieve this, we need an updating mechanism that can refine the rule

base periodically. Again, the architecture in Chapter 2 is adopted here as

follows:

1) Decisions generated by the inference engine, together with the

corresponding inference chains, are stored in a decision log.

2) The decision log is audited periodically by human traders to check for

conflicting decisions.

3) Conflicting decisions are recorded and stored as negative examples of the

corresponding rules.

www.manaraa.com

150

y

4) If the number of conflicting conclusions has fallen below a given

threshold level, the induction procedures discussed in Section 4.5. are

invoked.

www.manaraa.com

151

CHAPTERS

CONCLUDING REMARKS

5.1. Summary

We have extended the conventional architecture of expert systems to

incorporate knowledge acquisition and refinement in this thesis. Two new

components, decision log and knowledge refiner, are added. The former

keeps track of the decision generated b. the expert system and the

corresponding chain of reasoning. By periodically audit the entries of the

decision log and compare them with that of human experts, one can infer

the validity of the knowledge base. The validity of a knowledge base is

measured by the number of conflicting decisions between the expert

system and human experts. If this number fell below a threshold value, the

knowledge refiner is invoked to refine the knowledge base in light of the

conflicting decisions.

The architecture is not restricted to any specific kind of knowledge

representation schema or inference procedures. To demonstrate its

generality, two task specific reasoning systems are studied using this

extended architecture. The two tasks are pattern recognition and

ft

www.manaraa.com

152

classification. Furthermore, to illustrate the applicability of this

architecture to solve real-life problems, both tasks are applied in

automating security trading. Fig. 5.1. summaries the knowledge scheme,

the inference method, die decision log, and die knowledge refining method

of these two tasks.

5.2. Future Research Directions

As mentioned earlier in this thesis, the assumption that underlies this

architecture is the validity of the inference method. By assuming the

inference method of an expert system is consistent with the reasoning

process of human experts, we are able to focus primarily on the validity of

the stored knowledge. Furthermore, by using the number of conflicting

decisions as the performance criterion, one cannot distinct the situations

between a deteriotating knowledge base that due to a changing domain or

one that due to bias sample.

This research will continue in three directions as follows :

1) To understand the changing inference process of human experts and to

develop methodology to detect and monitor these changes.

www.manaraa.com

Pattern Recognition Classification

Knowledge
Scheme

Phrase
Structure
Grammar

Classification
Rule

Inference
Mechanism Parsing

Forward/
Backward
Chaining

Decision
Log

Pattern
Classifications

Decision and
Reasoning
Chain

Knowledge
Refinement

Grammatical
Inference

Concept
Induction

Fig. 5.1. Components of Pattern Recognition and Classification Systems

www.manaraa.com

154

2) To develop new measure of the validity of a knowledge base that can

distinct between an outdated knowledge base and one that due to bias

sample.

3) To test the applicability of the proposed architecture in different

application domains and different reasoning tasks.

www.manaraa.com

LIST OF REFERENCES

www.manaraa.com

155

LIST OF REFERENCES

Aho, A. V. and Ullman, J. D., "The Theory of Languages," J. Math. Syst.
Theory, 2, 1968.

Aho, A. V. and Peterson, T. G., "A Minimum Distance Error-Correcting
Parsers for Context-Free Languages," SIAM J. Comp., 4,1972.

Angluin, D. and Smith, C. H., "Inductive Inference : Theory and
Methods," Computing Survey, 15,3,1983.

Bainbridge, L., "Asking Questions and accessing knowledge," Future
Computing Systems 1,1986.

Belkin, N. J., Brooks, H. M. and Daniels, P. J., "Knowledge Elicitation
Using Discourse Analysis," Knowlege Acquisition fo r Knowledge-Based
Systems Workshop, Banff, Canada, 1986.

Boose, J. H., "Personal Construct Theory and the Transfer of the
Human Expertise," Proc. o f the N ational Conference on A rtific ia l
Intelligence, Austin, Texas 1984.

Boose, J. H., "A Knowledge Acquisition Program for Expert Systems
based on Personal Construct Psychology," International Journal o f
Man-Machine Studies, 23,1985.

Boose, J. H., Expertise Transfer fo r Expert System Design, New York,
Elsevier, 1986.

Boose, J. H. and Bradshaw, J. M., "Expertise Transfer and Complex
Problems Using AQUINAS as a Knowledge Acquisition Workbench for
Expert Systems," Knowledge Acquisition fo r Knowledge-Based Systems
Workshop, Banff, Canada, 1986.

www.manaraa.com

156

Buchanan, B. G., "New Research in Expert Systems" in M achine
Intelligence 10 (Hayes, J. E., Michie, D., and Pao, Y. H. eds.),
Edinburgh : Edinburgh University Press, 1982.

Buchanan, B. G. and Mitchell, T.M., "Model-directed Learning of
Production Rules" in Pattern-directed Inference Systems (Waterman, D.
A. and Hayes-Roth, F. eds.), New Y oik: Academic Press, 1978.

Bunely, A., Silver, B. and Plummer, D., "An Analytical Comparison of
Some Rule Learning Programs," Artificial Intelligence, 27,1985.

Buntine, W., "Induction of Horn Clauses : Methods and the Plausible
Generalization Algorithm," K n o w led g e A c q u is itio n f o r
Knowledge-Based Systems workshop, Banff, Canada, 1986.

Burstein, M. H., "Concept Formation by Incremental Analogical
Reasoning and Debugging," Machine Learning : An Artificial Intelligence
Approach 2 (Michalski, R. S., Carbone 11, J. G. and Michalski R. S.
eds.), California : Tioga, 1983.

Carbonell, J. G., "Learning by Analogy : Formulating and Generalizing
Plans from Past Experience" in Machine Learning : An Artifical
Intelligence Approach 1 (Michalski, R. S., Carbonell, J. G., and
Mitchell, T. M. eds.), California : Tioga, 1983.

Carbonell, J. G., Michalski, R. S., and Mitchell, T. M., "An Overview of
Machine Learning," in Machine Learning : An Artificial Intelligence
Approach 1 (Michalski, R. S., Carbonell, J. G., and Mitchell, T. M.
eds.), California : Tioga, 1983.

Chandrasekaran, B., ’Towards a Taxanomy of Problem Solving Types,"
AI M agazine, 4,1,1983.

Chandrasekaran, B., "Expert Systems : Matching Techniques to Tasks" in
Artificial Intelligence Applications fo r Business, Norwood, New Jersey :
Albex 1984.

www.manaraa.com

157

Chandrasekaran, B., "Generic Tasks in Knowledge-Based Reasoning :
High-Level Building Blocks for Expert System Design,” IEEE E x p ert, 1,
3,1986.

Chang, C. L. and Lee, R. C. T., Sym bolic L og ic an d M echanical
Theorem Proving , New York: Academic Press, 1973.
Chomsky, N., "Three Models for the description of languages," IEEE.
Trans. Inf. Theory IT-2, 1956.

Chomsky, N., "On Certain Formal Properties of Grammars," Inf. Control
, 2,1959.

Chomsky, N., "A Note on Phrase-Structure Grammars," Inf. C o n tro l, 2,
1959.

Cohen, P. R., and Feigenbaum, E. A. (eds.), The Handbook o f Artificial
Intelligence, Vol. 3 , California : Kaufmann, 1982.

Dietterich, T.G., London, R., Clarkson, K. and Dromey, R., "Learning
and Inductive Inference" in The H andbook o f A rtific ia l In telligence
(Feigenbaum E. eds.), Morgan Kaufmann, Los Altos, 1982.

Dietterich, T. G. and Michalski, R. S., "A Comparative Review of Selected
Methods for Learning from Examples," in M achine Learning : An
A rtificia l Intelligence Approach (Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. eds.), Tioga, 1983.

Duffy, F., "Dealing Rooms," The Banker, September 1986.

Earley, J., "An Efficient Context-Free Parsing Algorithm," Comm. ACM ,
13,1970.

Ericsson, K. A. and Simon, H. A., Protocol Analysis : Verbal Reports as
Data, Cambridge, MA : MIT Press, 1984.

Forgy, C. L., The OPS5 U ser's M anual, Carnegie Mellon University,
Department of Computer Science, 1981.

www.manaraa.com

158

Gammack, J. G. and Young, R. M., "Psychological Techniques for
Eliciting Expert Knowledge," Proceeding o f the 4th Technical Conference
o f the B.C. Specialist Group on Expert Systems, University of Warwick,
1984.

Gentner, D., "The Structure of Analogical Models in Science," Technical
Report No. 4451, Bolt Beranek and Newman, Cambridge, Mass., 1980.

Gentner,D., "Structure-Mapping : A Theoretical Framework for
Analogy," Cognitive Science, 7,2,1983.

Gips, J., "A Syntactic-Directed Program that Performs a
Three-Dimensional Perceptual Task,” Pattern Recognition, 6,1974.

Hart, A., "The role of Induction in Knowledge Elicitation," E x p ert
Systems 2,1985.

Hayes-Roth, F. and McDermott, J., "Patterns of Induction and Associated
Knowledge Acquisition Algorithms," Pattern Recognition and Artificial
Intelligence (Chen, C. ed.), New York : Academic Press.

Hendrix, G., "Discourse Analysis” in U n derstanding Spoken
K n ow ledge (Walker, D. E. ed.). New York : Elsevier-North Holland,
1979.

Holsapple, W. C., Tam, K. Y., and Whinston, A. B., " An Induction
Approach to Acquire Trading Rules," Working Paper, Krannert Graduate
School of Management, Purdue University, 1987.

Johnson, S. C. ."Hierarchical Clustering Schemes," Psychometrika, 32,
1967.

Kaufman, P., Commodity Trading Systems and Methods, N. Y., 1978.

Kelly, G. A., The P sychology o f P ersonal C onstructs, New York :
Norton, 1955.

www.manaraa.com

159

Kraskal, J. B., "Multidimensional Scaling by Optimizing Goodness of Fit
to a Nonmetric Hypothesis," Psychmetrika, 29,1964.

Lafrance, M., "The Knowledge Acquisition Grid : A Method for
Training Knowledge Engineers," K n o w led g e A c q u is itio n f o r
Knowledge-Based Systems Workshop, Banff, Canada, 1986.

Larson, J. and Michalski, R. S., "Inductive Inference of VL Decision
Rules," P roceedings o f the W orkshop on P attern D irected Inference
Systems, SIGART, N ew sletter 63, 1977.

Levenshtein, V. I., "Binary Codes Capable of Correcting Deletions,
Insertions and Reversals," Sov. Phys. Dokl. 10,8,1966.

MaCarthy, J., "Programs with Common Sense," in Sem antic
Information Processing (Minsky, M. ed.), Cambridge, M ass.: MIT Press,
1968.

Michalski, R. S. and Larson, J. B., "Selection of most representative
training examples and incremental generation of VL1 hypotheses : The
underlying methodology and die description of programs ESEL and
A Q li,"Rep. No. 867, Computer Science Department, University of
Illinois, Urbana, 1978.

Michalski, R. S., "Pattern Recognition as Rule-guided Inductive
Inference," IEEE .Tran, on Pattern Analysis and Machine Intelligenece, 2,
4,1980

Michalski, R.S. and Chilausky, R. L., "Knowledge acquisition by encoding
expert system rates versus computer induction from example - A case
study involving soybean pathology," In tern a tio n a l Jou rn a l of
Man-Machine Studies 12,1980.

Michalski, R. S., "A Theory and Methodology of Inductive Learning,"
Artificial Intelligence, 20,1983.

www.manaraa.com

160

Michalski, R. S., "Learning Strategies and Automated Knowledge
Acquisition : An Overview" in Knowledge Based Learning Systems (Bole,
L. ed.), Springer-Verlag, 1985.

Michalski, R. S. and Chilausky, R. L., "Learning by being told and
learning by examples : an experimental comparison of two methods of
knowledge acquisition in the context of developing an expert system for
soybean disease diagnosis," International Journal o f Policy Analysis and
Information Systems, 4,2,1980.
Minsky, M., "A Framework for Representing Knowledge," in The
P sych o lo g y o f C om puter V ision (Winston, P. ed.), New York :
McGraw-Hill, 1975.

Mitchell, T. M., "Version Spaces : A Candidate Elimination Approach to
Rule Learning," Proc. o f the 5th. Int. C orf, on Artificial Intelligence,
Cambridge, Mass., 1977.

Mitchell, T. M., "Generalization as Search," A rtificial Intelligence, 18,
1982.

Moayer B. and Fu, K. S., "A Tree System Approach for Fingerprint
Pattern Recognition," IEEE Trans. Comp. C -25 ,1976.

Newell, A. and Simon, H. A., Human Problem Solving, New Jersey :
Prentice-Hall Inc, 1972.

Quillian, R., "Semantic Memory," in Semantic Information Processing
(Minsky, M.ed.), Cambridge, Mass.: MIT Press, 1968.

Raphael, B., "A Computer Program for Semantic Information Retrieval,"
in Semantic Information Processing (Minsky, M. ed.), Cambridge, Mass.:
MIT Press, 1968.

Reid, I., "Artificial Intelligence in the Market," The Banker, 1986.

Rosenfeld, A., Picture Languages, New York : Academic Press, 1979.

www.manaraa.com

161

Stallings, W. W., "Chinese Character Recognition," in Syntactic Pattern
Recognition Applications (Fu, K. S. ed.), New York : Springer-Verlag,
1979.

Sammut, C. A., "Learning Concepts by Performing Experiments,"
Ph.D. dissertation, Department of Computer Science, University of New
South Wales, Sydney, Australia, 1981.

Schank, R. C., C onceptual Inform ation P rocessin g , Amsterdam :
North-Holland, 1975.

Shorthffe, E. H., Com puter-based M edical Consultations : MYCIN,
New York : Elsevier, 1976.

Simon, H. A., "Why should Machines Learn ?" in Machine Learning :
An Artificial Intelligence Approach 1 (Michalski, R. S., Carbonell, J. G.
and Mitchell, T. M. eds.), California: Tioga, 1983.

Solomonoff, R. J., "A Formal Theory of Inductive Inference," Inf.
Control, 7,1-22,1964.

Tanaka, E. and Fu, K. S., "Error-Correcting Parsers for Formal
Languages," IEEE Trans. Comp. C -2 7 ,1978.

Tversky, A., "Features of Similarity," Psychological Review , 84,1977.
Waterman, D. A. and Newell, A., "Protocol Analysis as a Task for
Artificial Intelligence", Artificial Intelligence, 2,1971.

Winston, P. H., "Learning Structural Descriptions from Examples", in
Psychology o f Computer Vision (Winston, P. eds), McGraw-Hill, 1975.

Winston, P. H., "Learning and Reasoning by Analogy," Communication
o f ACM , 23,12,1980.

You, K. C., Fu, K. S., "A Syntactic Approach to Shape Recognition using
Attributed Grammars," IEEE. Trans. Syst. Man Cybern., SM C-9(6),
1979.

www.manaraa.com

VITA

www.manaraa.com

162

VITA

Kar Yan Tam was bom in Hong Kong on April 2, 1962. He received his

B.S. in Mathematics and Computer Science from University of Illinois

(Urbana-Champaign) in May 1984 and his M.S. in Computer Sciences

from Purdue University in May 1987. His research interests are security

trading automation, expert systems and machine learning.

